17.有下列敘述:
①若$\overrightarrow{a}$=(1,k),$\overrightarrow$=(-2,6),$\overrightarrow{a}$∥$\overrightarrow$,則k=-3;
②終邊在y軸上的角的集合是{α|α=$\frac{kπ}{2}$,k∈Z};
③已知f(x)是定義在R上的不恒為0的函數(shù),若a,b是任意的實數(shù),都有f(a•b)=f(a)+f(b),則y=f(x)的偶函數(shù);
④函數(shù)y=sin(x-$\frac{π}{2}$)在[0,π]上是減函數(shù);
⑤已知A和B是單位圓O上的兩點,∠AOB=$\frac{2}{3}$π,點C在劣弧$\widehat{AB}$上,若$\overrightarrow{OC}$=x$\overrightarrow{OA}$+y$\overrightarrow{OB}$,其中,x,y∈R,則x+y的最大值是2;
以上敘述正確的序號是①③⑤.

分析 ①根據(jù)向量平行的坐標(biāo)公式進行求解判斷.
②根據(jù)角的終邊的性質(zhì)進行判斷.
③根據(jù)抽象函數(shù)的定義和奇偶性的定義進行判斷.
④根據(jù)三角函數(shù)的性質(zhì)進行判斷.
⑤根據(jù)平面向量的基本定理進行判斷.

解答 解:①若$\overrightarrow{a}$=(1,k),$\overrightarrow$=(-2,6),$\overrightarrow{a}$∥$\overrightarrow$,則-2k-6=0得k=-3,故①正確;
②終邊在y軸上的角的集合是{α|α=kπ+$\frac{π}{2}$,k∈Z},故②錯誤;
③令a=2,b=1,則f(2)=f(2)+f(1),解得f(1)=0,
令a=-1,b=-1,則f(1)=f(-1)+f(-1)=2f(-1)=0,則f(-1)=0,
令b=-1,代入上式,
∴f(-a)=f(-1)+f(a)=f(a),
∴f(x)是偶函數(shù).故③正確;
④函數(shù)y=sin(x-$\frac{π}{2}$)=-cosx在[0,π]上是增函數(shù),故④錯誤;
⑤由已知條件知:${\overrightarrow{OC}}^{2}=1=(x\overrightarrow{OA}+y\overrightarrow{OB})^{2}$=${x}^{2}{\overrightarrow{OA}}^{2}+2xy\overrightarrow{OA}•\overrightarrow{OB}+{y}^{2}{\overrightarrow{OB}}^{2}$=x2-xy+y2=(x+y)2-3xy;
∴(x+y)2-1=3xy,根據(jù)向量加法的平行四邊形法則,容易判斷出x,y>0,
∴$x+y≥2\sqrt{xy}$,∴$xy≤\frac{(x+y)^{2}}{4}$;
∴$(x+y)^{2}-1≤\frac{3}{4}(x+y)^{2}$,∴(x+y)2≤4,∴x+y≤2,即x+y的最大值為2.故⑤正確,
故答案為:①③⑤

點評 本題主要考查命題的真假判斷,涉及平面向量的基本內(nèi)容以及三角函數(shù),函數(shù)奇偶性的判斷,涉及的知識點較多,綜合性較強.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)f(x)=xlnx+ax-x2(a∈R).
(1)若函數(shù)f(x)在[e,+∞)上為減函數(shù),求實數(shù)a的取值范圍;
(2)若對任意的x∈(1,+∞),f(x)>-x2+(k+a-1)x-k恒成立,求正整數(shù)k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.設(shè)△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,且$a=2,cosC=-\frac{1}{4}$,3sinA=2sinB
(1)求邊b和邊c;
(2)求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知圓C:x2+y2-2x-4y+m=0
(1)求m的取值范圍;
(2)當(dāng)m=1時,若圓C與直線x+ay-2=0交于M,N兩點,且CM⊥CN,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.在底面直徑為4的圓柱形容器中,放入一個半徑為1的冰球,當(dāng)冰球全部融化后,容器中液面的高度為0.3(相同體積的冰與水的質(zhì)量比為9:10)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.雙曲線$\frac{{y}^{2}}{4}$-x2=1的一條漸近線的方程為(  )
A.y=2xB.y=4xC.y=$\frac{1}{2}$xD.y=$\frac{1}{4}$x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.設(shè)x,y滿足約束條件$\left\{\begin{array}{l}{x-y≤0}\\{x+2y-6≤0}\\{2x+y-3≥0}\end{array}\right.$,目標(biāo)函數(shù)z=ax-y僅在(0,3)取得最大值,則a的取值范圍是( 。
A.($\frac{1}{2}$,+∞)B.(-2,-$\frac{1}{2}$)C.(-∞,-$\frac{1}{2}$)D.(-∞,-2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.下列有關(guān)命題的說法正確的有①②④(填寫序號)
①命題“若x2-3x+2=0,則xx=1”的逆否命題為:“若x≠1,則x2-3x+2≠0”
②“x=1”是“x2-3x+2=0”的充分不必要條件
③若p∧q為假命題,則p.q均為假命題
④對于命題p:?x∈R使得x2+x+1<0,則¬p:?x∈R,均有x2+x+1≥0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.以下莖葉圖記錄了在高三一診模擬考試中,A,B兩個學(xué)校的各4個班的優(yōu)生人數(shù),其中有兩個數(shù)據(jù)模糊不清,在圖中用x,y表示,統(tǒng)計顯示,A,B兩個學(xué)校的優(yōu)生人數(shù)的平均值相等,A校優(yōu)生人數(shù)的方差比B校優(yōu)生人數(shù)的方差小1.
(Ⅰ)求實數(shù)x,y的值;
(Ⅱ)從A,B兩校中各隨機抽取一個班級,記這兩個班的優(yōu)生人數(shù)分別為m,n,求隨機變量ξ=|m-n|的分布列及數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊答案