過點P(3,0)的直線m,夾在兩條直線l1:x+y+3=0與l2:2x-y-2=0之間的線段恰被點P平分,那么直線m的方程為
 
分析:當斜率不存在時,不合題意;當斜率存在時,設(shè)所求的直線方程為y=k(x-3),進而得出交點,根據(jù)點P為兩交點的中點建立等式,求出k的值,從而求出所求.
解答:解:如果所求直線斜率不存在,則此直線方程為x=3,不合題意.
∴設(shè)所求的直線m方程為y=k(x-3),
∴分別聯(lián)立直線m與l1,l2的方程得
y=k(x-3)
x+y+3=0
y=k(x-3)
2x-y-2=0
,
解得:
x=
3k-3
k+1
y=
-6k
k+1
x=
3k-2
k-2
y=
4k
k-2
,
∴直線m與l1,l2的交點分別為(
3k-3
k+1
,
-6k
k+1
),(
3k-2
k-2
,
4k
k-2
).
∵夾在兩條直線l1:x+y+3=0與l2:2x-y-2=0之間的線段恰被點P平分,
-6k
k+1
+
4k
k-2
=0且
3k-3
k+1
+
3k-2
k-2
=6,解得k=8,
∴所求的直線方程為y=8x-24.
故答案為:y=8x-24.
點評:本題主要考查了直線的點斜式方程,交點坐標的求法以及中點坐標公式等知識,有一定的綜合性,同時考查了運算求解的能力,屬于中檔題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

(2012•淮南二模)已知橢圓C:
x2
a2
+
y2
b2
=1,(a>b>0)與雙曲4x2-
4
3
y2=1有相同的焦點,且橢C的離心e=
1
2
,又A,B為橢圓的左右頂點,M為橢圓上任一點(異于A,B).
(1)求橢圓的方程;
(2)若直MA交直x=4于點P,過P作直線MB的垂線x軸于點Q,Q的坐標;
(3)求點P在直線MB上射R的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年安徽省皖南八校高三第一次聯(lián)考理科數(shù)學試卷 題型:解答題

(本小題滿分12分)已知橢圓過點A(a,0),B(0,b)的直

 

線傾斜角為,原點到該直線的距離為.

 

(1)求橢圓的方程;

(2)斜率小于零的直線過點D(1,0)與橢圓交于M,N兩點,若求直線MN的方程;

(3)是否存在實數(shù)k,使直線交橢圓于P、Q兩點,以PQ為直徑的圓過點D(1,0)?若存在,求出k的值;若不存在,請說明理由。

 

查看答案和解析>>

科目:高中數(shù)學 來源:2012年安徽省淮北市高考數(shù)學二模試卷(文科)(解析版) 題型:解答題

已知橢圓C:+=1,(a>b>0)與雙曲4x2-y2=1有相同的焦點,且橢C的離心e=,又A,B為橢圓的左右頂點,M為橢圓上任一點(異于A,B).
(1)求橢圓的方程;
(2)若直MA交直x=4于點P,過P作直線MB的垂線x軸于點Q,Q的坐標;
(3)求點P在直線MB上射R的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學 來源:2012年安徽省淮南市高考數(shù)學二模試卷(理科)(解析版) 題型:解答題

已知橢圓C:+=1,(a>b>0)與雙曲4x2-y2=1有相同的焦點,且橢C的離心e=,又A,B為橢圓的左右頂點,M為橢圓上任一點(異于A,B).
(1)求橢圓的方程;
(2)若直MA交直x=4于點P,過P作直線MB的垂線x軸于點Q,Q的坐標;
(3)求點P在直線MB上射R的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學 來源:2012年安徽省淮北市高考數(shù)學二模試卷(理科)(解析版) 題型:解答題

已知橢圓C:+=1,(a>b>0)與雙曲4x2-y2=1有相同的焦點,且橢C的離心e=,又A,B為橢圓的左右頂點,M為橢圓上任一點(異于A,B).
(1)求橢圓的方程;
(2)若直MA交直x=4于點P,過P作直線MB的垂線x軸于點Q,Q的坐標;
(3)求點P在直線MB上射R的軌跡方程.

查看答案和解析>>

同步練習冊答案