8.定義在R上的函數(shù)y=f(x)滿足f(x+2)=2f(x),且x∈(-1,1]時(shí),$f(x)=-|x|+\frac{1}{2}$,則當(dāng)x∈(0,7]時(shí),y=f(x)與g(x)=log4x的圖象的交點(diǎn)個(gè)數(shù)為( 。
A.6B.7C.8D.9

分析 根據(jù)函數(shù)的關(guān)系,求出函數(shù)在(0,7]上的解析式,作出函數(shù)f(x)與g(x)的圖象,利用數(shù)形結(jié)合進(jìn)行求解即可.

解答 解:∵f(x+2)=2f(x),且x∈(-1,1]時(shí),$f(x)=-|x|+\frac{1}{2}$,
∴f(x)=2f(x-2),
若x∈(1,3],則x-2∈(-1,1],則f(x)=2f(x-2)=2(-|x-2|+$\frac{1}{2}$)=-2|x-2|+1,
若x∈(3,5],則x-2∈(1,3],則f(x)=2f(x-2)=2(-2|x-2-2|+1)=-4|x-4|+2,
若x∈(5,7],則x-2∈[3,5],則f(x)=2f(x-2)=2(-4|x-2-4|+2)=-8|x-6|+4,
作出函數(shù)f(x)和g(x)在∈(0,7]上的圖象如圖:
由圖象知兩個(gè)函數(shù)共有7個(gè)交點(diǎn),
故選:B.

點(diǎn)評(píng) 本題主要考查函數(shù)與方程的應(yīng)用,求出函數(shù)的解析式,利用數(shù)形結(jié)合是解決本題的關(guān)鍵.考查學(xué)生的作圖能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.設(shè)a,b,c為三條不同的直線,α,β是兩個(gè)不同的平面,則下列判斷正確的是(  )
A.若a⊥b,b⊥c,則a⊥cB.若a∥α,b∥α,則a∥bC.若a∥α,b⊥α,則b∥αD.若a⊥α,α∥β,則a⊥β

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.如圖,山頂上有一座電視塔,在塔頂B處測(cè)得地面上一點(diǎn)A的俯角α=60°,在塔底C處測(cè)得點(diǎn)A的俯角β=45°,已知塔高60m,則山高為30($\sqrt{3}$+1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知函數(shù)f(x)=$\frac{m\sqrt{x}+lnx}{x}$(x>0),m∈R,若函數(shù)f(x)的圖象與x軸存在交點(diǎn),求m的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知雙曲線$\frac{x^2}{a^2}$-$\frac{y^2}{3}$=1(a>0)過(guò)點(diǎn)(-2,0),則雙曲線的離心率為( 。
A.$\frac{1}{2}$B.2C.$\frac{\sqrt{5}}{2}$D.$\frac{\sqrt{7}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.直線$\left\{\begin{array}{l}x=5-3t\\ y=3+\sqrt{3}t\end{array}\right.$(為參數(shù))的傾斜角為(  )
A.30°B.60°C.120°D.150°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.在三棱柱ABC-A1B1C1中,底面為棱長(zhǎng)為1的正三角形,側(cè)棱AA1⊥底面ABC,點(diǎn)D在棱BB1上,且BD=1,若AD與平面AA1C1C所成的角為α,則sinα的值是$\frac{\sqrt{6}}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.已知三棱柱ABC-A1B1C1的側(cè)棱垂直于底面,各頂點(diǎn)都在同一球面上,若該球的表面積為12π,AB=2,AC=1,∠BAC=60°,則此三棱柱的體積為$\sqrt{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.若數(shù)列{an}滿足a1=1,且$\frac{1}{{{a_{n+1}}}}-\frac{1}{a_n}=n+1$(n∈N*),則數(shù)列{an}的前n項(xiàng)和Sn=$\frac{2n}{n+1}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案