6.設(shè)a,b,c為三條不同的直線,α,β是兩個不同的平面,則下列判斷正確的是( 。
A.若a⊥b,b⊥c,則a⊥cB.若a∥α,b∥α,則a∥bC.若a∥α,b⊥α,則b∥αD.若a⊥α,α∥β,則a⊥β

分析 在A中,a與c相交、平行或異面;在B中,a與b相交、平行或異面;在C中,b與α相交;在D中,由平面與平面垂直的判定定理得a⊥β.

解答 解:由a,b,c為三條不同的直線,α,β是兩個不同的平面,知:
在A中,若a⊥b,b⊥c,則a與c相交、平行或異面,故A不正確;
在B中,若a∥α,b∥α,則a與b相交、平行或異面,故B不正確;
在C中,若a∥α,b⊥α,則b與α相交,故C不正確;
在D中,若a⊥α,α∥β,則由平面與平面垂直的判定定理得a⊥β,故D正確.
故選:D.

點評 本題考查命題真假的判斷,是中檔題,解題時要認真審題,注意空間中線線、線面、面面間的位置關(guān)系的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.(x-y)7的展開式中,系數(shù)絕對值最大的項是第四與第五項?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知等差數(shù)列{an}中,若a3+3a6+a9=120,則2a7-a8的值為( 。
A.24B.-24C.20D.-20

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知a,b,c分別是△ABC的三個內(nèi)角A,B,C所對的邊.
(1)若△ABC的周長為$\sqrt{2}$+1,且sinA+sinB=$\sqrt{2}$sinC,求邊AB的長;
(2)若a=ccosB,且b=csinA.試判斷△ABC的形狀.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.設(shè)數(shù)列{an}滿足a1=3,an+1-an=8×32n-1
(1)求數(shù)列{an}的通項公式;
(2)令bn=nan,求數(shù)列{bn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.設(shè)f(x)=(2x-1)ex,則f′(0)等于( 。
A.1B.-1C.4D.-4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.正項等比數(shù)列{an}滿足a1=1,a2a6+a3a5=128,則下列結(jié)論正確的是( 。
A.?n∈N*,anan+1≤an+2B.?n∈N*,an+an+2=2an+1
C.?n∈N*,Sn<an+1D.?n∈N*,an+an+3=an+1+an+2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.從某班的一次數(shù)學(xué)測驗試卷中任意抽出10份,其得分情況如下:81、98、43、75、60、55、78、84、90、70,則這次測驗調(diào)查的樣本方差為252.84.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.定義在R上的函數(shù)y=f(x)滿足f(x+2)=2f(x),且x∈(-1,1]時,$f(x)=-|x|+\frac{1}{2}$,則當(dāng)x∈(0,7]時,y=f(x)與g(x)=log4x的圖象的交點個數(shù)為( 。
A.6B.7C.8D.9

查看答案和解析>>

同步練習(xí)冊答案