已知直線l1的方程為3x+4y-12=0,求滿足下列條件的直線l2的方程.
(1)l1與l2平行且過點(-1,3)
(2)l1與l2垂直且與兩坐標軸圍成的三角形面積為4.
(1)直線l1:3x+4y-12=0,k1=-
3
4
,
∵l1l2k2=k1=-
3
4
,
∴直線l2:y=-
3
4
(x+1)+3
,
即3x+4y-9=0,
(2)∵l1⊥l2,
k2=
4
3
,
設(shè)l2的方程為y=
4
3
x+b
,
則它與兩坐標軸交點是(0,b),(-
3
4
b,0
),
∴S=
1
2
|b|•|-
3
4
b|=4
,即b2=
32
3
,
∴b=±
4
6
3

∴直線l2的方程是y=
4
3
4
6
3
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

直線l過點A(2,3),且直線l的傾斜角等于直線x-3y+4=0的傾斜角的二倍,
(1)求直線l的方程;
(2)求點B(0,-l)到直線l的距離.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

經(jīng)過兩條直線3x+4y-5=0和3x-4y-13=0的交點,且斜率為2的直線方程是______.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知兩條直線l1:mx+8y+n=0和l2:2x+my-1+
n
2
=0
.試確定m,n的值或取值范圍,使:
(Ⅰ)l1⊥l2;
(II)l1l2

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

直線l1x+2y-4=0與l2:mx+(2-m)y-1=0平行,則實數(shù)m=______.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

求經(jīng)過點A(-1,2),并且在兩個坐標軸上的截距的相等的直線方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

如果兩條直線l1:ax+2y+6=0與l2:x+(a-1)y+3=0平行,那么a等于( 。
A.1B.-1C.2D.
2
3

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

5.設(shè),則直線恒過定點          

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知函數(shù)的圖象關(guān)于直線的解為(  )
A.8B.-8C.D.

查看答案和解析>>

同步練習冊答案