【題目】在 ,點(diǎn)M是△ABC外一點(diǎn),BM=2CM=2,則AM的最大值與最小值的差為

【答案】2
【解析】解:取邊BC的中點(diǎn)為O,則 = ), 又 =0,∴ =0,
,∴△ABC為等腰三角形,
又∠A= ,∴△ABC為等邊三角形,
以O(shè)為坐標(biāo)原點(diǎn),以BC邊所在的直線為x軸,
建立平面直角坐標(biāo)系如圖所示;

并設(shè)BC=2a( <a< ),點(diǎn)M(x,y);
則A(0, a),B(﹣a,0),C(a,0),
又BM=CM=2,
所以(x+a)2+y2=4
(x﹣a)2+y2=1,
所以解方程組 得:
所以當(dāng)
=
=
=
令a2 =cosθ,
則AM= = ,
所以當(dāng)θ= 時(AM)min=1,
同理當(dāng) 時,
AM= = = ,
所以當(dāng)θ= 時(AM)max=3;
綜上可知:AM的取值范圍是[1,3],
AM的最大值與最小值的差是2.
所以答案是:2.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知:向量 =( ,0),O為坐標(biāo)原點(diǎn),動點(diǎn)M滿足:| + |+| |=4.
(1)求動點(diǎn)M的軌跡C的方程;
(2)已知直線l1 , l2都過點(diǎn)B(0,1),且l1⊥l2 , l1 , l2與軌跡C分別交于點(diǎn)D,E,試探究是否存在這樣的直線使得△BDE是等腰直角三角形.若存在,指出這樣的直線共有幾組(無需求出直線的方程);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】工人在懸掛如圖所示的一個正六邊形裝飾品時,需要固定六個位置上的螺絲,首先隨意擰緊一個螺絲,接著擰緊距離它最遠(yuǎn)的第二個螺絲,再隨意擰緊第三個螺絲,接著擰緊距離第三個螺絲最遠(yuǎn)的第四個螺絲,第五個和第六個以此類推,則不同的固定方式有種.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】將函數(shù)y=cos(2x+ )的圖象向左平移 個單位后,得到f(x)的圖象,則(
A.f(x)=﹣sin2x
B.f(x)的圖象關(guān)于x=﹣ 對稱
C.f( )=
D.f(x)的圖象關(guān)于( ,0)對稱

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C: (a>b>0)經(jīng)過點(diǎn)( ,1),過點(diǎn)A(0,1)的動直線l與橢圓C交于M、N兩點(diǎn),當(dāng)直線l過橢圓C的左焦點(diǎn)時,直線l的斜率為
(1)求橢圓C的方程;
(2)是否存在與點(diǎn)A不同的定點(diǎn)B,使得∠ABM=∠ABN恒成立?若存在,求出點(diǎn)B的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知左、右焦點(diǎn)分別為F1(﹣c,0),F(xiàn)2(c,0)的橢圓 過點(diǎn) ,且橢圓C關(guān)于直線x=c對稱的圖形過坐標(biāo)原點(diǎn).
(I)求橢圓C的離心率和標(biāo)準(zhǔn)方程.
(II)圓 與橢圓C交于A,B兩點(diǎn),R為線段AB上任一點(diǎn),直線F1R交橢圓C于P,Q兩點(diǎn),若AB為圓P1的直徑,且直線F1R的斜率大于1,求|PF1||QF1|的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}的前 n 項(xiàng)和為 Sn , a1=1,且 an+1=2Sn+1,n∈N
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)令 c=log3a2n , bn= ,記數(shù)列{bn}的前 n 項(xiàng)和為Tn , 若對任意 n∈N , λ<Tn 恒成立,求實(shí)數(shù) λ 的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】執(zhí)行如圖所示的程序框圖,如果輸入的x∈[﹣1,3],則輸出的y屬于(
A.[0,2]
B.[1,2]
C.[0,1]
D.[﹣1,5]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若集合M滿足:x,y∈M,都有x+y∈M,xy∈M,則稱集合M是封閉的.顯然,整數(shù)集Z,有理數(shù)集Q都是封閉的.對于封閉的集合M(MR),f:M→M是從集合到集合的一個函數(shù), ①如果都有f(x+y)=f(x)+f(y),就稱是保加法的;
②如果x,y∈M都有f(xy)=f(x)f(y),就稱f是保乘法的;
③如果f既是保加法的,又是保乘法的,就稱f在M上是保運(yùn)算的.
在上述定義下,集合 封閉的(填“是”或“否”);若函數(shù)f(x)在Q上保運(yùn)算,并且是不恒為零的函數(shù),請寫出滿足條件的一個函數(shù)f(x)=

查看答案和解析>>

同步練習(xí)冊答案