6.已知三棱錐P-ABC,若PA,PB,PC兩兩垂直,且PA=2,PB=PC=1,則三棱錐P-ABC外接球的體積為$\sqrt{6}$π.

分析 以PA、PB、PC為過同一頂點的三條棱,作長方體如圖,則長方體的外接球同時也是三棱錐P-ABC外接球.算出長方體的對角線即為球直徑,結合球的體積公式,可算出三棱錐P-ABC外接球的體積.

解答 解:以PA、PB、PC為過同一頂點的三條棱,作長方體如圖
則長方體的外接球同時也是三棱錐P-ABC外接球.
∵長方體的對角線長為$\sqrt{{2}^{2}+{1}^{2}+{1}^{2}}$=$\sqrt{6}$,
∴球直徑為$\sqrt{6}$,半徑R=$\frac{\sqrt{6}}{2}$,
因此,三棱錐P-ABC外接球的體積$\frac{4}{3}π×(\frac{\sqrt{6}}{2})^{3}$=$\sqrt{6}$π.
故答案為:$\sqrt{6}$π.

點評 本題給出三棱錐的三條側棱兩兩垂直,求它的外接球的體積,著重考查了長方體對角線公式和球的體積計算等知識,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

16.在△ABC中,a、b、c分別是角A、B、C的對邊,若a2+c2=b2+ac,且a:c=($\sqrt{3}$+1):2,求角C的值是$\frac{π}{4}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.若Sn為等差數(shù)列{an}的前n項和,且S4=4a3+2,則公差d的值為( 。
A.-1B.1C.-$\frac{1}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.三棱錐的四個面都是直角三角形,各棱長的最大值為4,則該三棱錐外接球的體積為(  )
A.$\frac{4π}{3}$B.$\frac{8π}{3}$C.$\frac{16π}{3}$D.$\frac{32π}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.過原點且與直線$\sqrt{6}x-\sqrt{3}y+1=0$平行的直線l被圓${x^2}+{({y-\sqrt{3}})^2}=7$所截得的弦長為2$\sqrt{6}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.動圓P過點M(-1,O),且與圓N:x2+y2-2x-15=0內(nèi)切,記圓心P的軌跡為曲線τ.
( 1)求曲線τ的方程;
(2)過點M且斜率大于0的直線l與圓P相切,與曲線τ交于A,B兩點,A的中點為Q.若點Q的橫坐標為-$\frac{4}{13}$,求圓P的半徑r.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.已知三棱錐P-ABC內(nèi)接于球O,PA=PB=PC=2,當三棱錐P-ABC的三個側面的面積之和最大時,球O的表面積為12π.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.在三棱錐P-ABC中,PA⊥平面ABC,$∠BAC={60°}{,_{\;}}AB=AC=2\sqrt{3}{,_{\;}}PA=2$,則三棱錐P-ABC的外接球的表面積為(  )
A.20πB.24πC.28πD.32π

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.如圖,圓柱形容器內(nèi)盛有高度為6cm的水,若放入3個相同的鐵球(球的半徑與圓柱的底面半徑相同)后,水恰好淹沒最上面的球,則球的半徑為( 。
A.4cmB.3cmC.2cmD.1 cm

查看答案和解析>>

同步練習冊答案