精英家教網 > 高中數學 > 題目詳情

如圖,若BE∥CF∥DG,AB∶BC∶CD=1∶2∶3,CF=12  cm,求BE,DG的長.

4(cm)   24(cm)

解析解 ∵BE∥CF,∴,
∵AB∶BC=1∶2,
∴AE∶AF=1∶3.
∵CF=12 cm,
∴BE=12×=4(cm).
∵CF∥DG,
.
又∵AB∶BC∶CD=1∶2∶3,
.
∴DG=·CF=24(cm).

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

如圖所示,AB為☉O直徑,直線CD與☉O相切于E,AD垂直CD于D,BC垂直CD于C,EF垂直AB于F,連接AE,BE.證明:

(1)∠FEB=∠CEB;
(2)EF2=AD·BC.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

如圖所示,銳角三角形ABC的內心為I,過點A作直線BI的垂線,垂足為H,點E為圓I與邊CA的切點.

(1)求證A,I,H,E四點共圓;
(2)若∠C=50°,求∠IEH的度數.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

如圖,PA、PB是圓O的兩條切線,A、B是切點,C是劣弧AB(不包括端點)上一點,直線PC交圓O于另一點D,Q在弦CD上,且求證:

(1);(2)

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

如圖,已知C點在圓O直徑BE的延長線上,CA切圓O于A點,DC是∠ACB的平分線交AE于點F,交AB于D點.

(1)求∠ADF的度數;
(2)AB=AC,求AC∶BC.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

如圖,△ABC內接于⊙O,點D在OC的延長線上,sinB=,∠D=30°.

(1)求證:AD是⊙O的切線.
(2)若AC=6,求AD的長.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

如圖,直線AB過圓心O,交于F(不與B重合),直線相切于C,交AB于E,且與AF垂直,垂足為G,連結AC

求證:(1);(2)

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

如圖,是圓的半徑,且,是半徑上一點:延長交圓于點,過作圓的切線交的延長線于點.求證:.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

如圖,在△ABC中,DE∥BC,DE分別與AB、AC相交于點D、E,若AD=4,DB=2,求DE與BC的長度比.

查看答案和解析>>

同步練習冊答案