如圖,、是圓的半徑,且是半徑上一點:延長交圓于點,過作圓的切線交的延長線于點.求證:.

詳見解析

解析試題分析:連接,先利用題中條件求出 ,然后利用弦切角定理證明.
試題解析:如下圖所示,連接,由于,,     2分
,故為等腰直角三角形,且,          4分
因為切圓于點,由弦切角定理知,              6分
.                10分

考點:等腰三角形、弦切角定理

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

如圖,若BE∥CF∥DG,AB∶BC∶CD=1∶2∶3,CF=12  cm,求BE,DG的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,AB為⊙O的直徑,直線CD與⊙O相切于E,AD垂直CDD,BC垂直CDC,EF垂直ABF,連接AE,BE.證明:

(1)∠FEB=∠CEB;
(2)EF2AD·BC.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,A、B是兩圓的交點,AC是小圓的直徑,D和E分別是CA和CB的延長線與大圓的交點,已知AC=4,BE=10,且BC=AD,求DE的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,的一條切線,切點為都是的割線,已知

(1)證明:
(2)證明:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖所示,已知與⊙相切,為切點,為割線,弦相交于點,上一點,且.

(1)求證:;
(2)求證:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,為△外接圓的切線,的延長線交直線于點,分別為弦與弦上的點,且,四點共圓.

(Ⅰ)證明:是△外接圓的直徑;
(Ⅱ)若,求過四點的圓的面積與△外接圓面積的比值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,、是圓的半徑,且,是半徑上一點:延長交圓于點,過作圓的切線交的延長線于點.求證:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,AB是⊙O的直徑,C、E為⊙O上的點,CA平分∠BAE,CF⊥AB, F是垂足,CD⊥AE,交AE延長線于D.

(I)求證:DC是⊙O的切線;
(Ⅱ)求證:AF.FB=DE.DA.

查看答案和解析>>

同步練習冊答案