分析 橢圓的離心率是e=$\frac{c}{a}$,則a=2b,則橢圓的方程可化為:x2+4y2=4b2.設(shè)M(m,n),直線AB的方程為:y=kx,可設(shè):A(x0,kx0),B(-x0,-kx0).代入橢圓方程和利用斜率計(jì)算公式即可得出.
解答 解:∵橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率是e=$\frac{c}{a}$=$\sqrt{1-\frac{^{2}}{{a}^{2}}}$=$\frac{\sqrt{3}}{2}$,a=2b,
于是橢圓的方程可化為:x2+4y2=4b2.
設(shè)M(m,n),直線AB的方程為:y=kx,可設(shè):A(x0,kx0),B(-x0,-kx0).
則m2+4n2=4b2,x02+4k2x02=4b2.
m2-x02=4k2x02-4n2,
∴k1•k2=$\frac{k{x}_{0}-n}{{x}_{0}-m}$×$\frac{-k{x}_{0}-n}{-{x}_{0}-m}$=$\frac{{n}^{2}-{k}^{2}{x}_{0}^{2}}{{m}^{2}-{x}_{0}^{2}}$=$\frac{{n}^{2}-{k}^{2}{x}_{0}^{2}}{4{k}^{2}{x}_{0}^{2}-4{n}^{2}}$=-$\frac{1}{4}$.
k1•k2=-$\frac{1}{4}$.
故答案為:-$\frac{1}{4}$.
點(diǎn)評(píng) 本題考查了橢圓的標(biāo)準(zhǔn)方程及其性質(zhì)、斜率計(jì)算公式等基礎(chǔ)知識(shí)與基本技能方法,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | [-3e-4,1) | B. | [-3e-4,1)∪{-e-2} | C. | [0,1)∪{-e-2} | D. | [0,1) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\sqrt{6}$ | B. | $\sqrt{5}$ | C. | 2 | D. | $\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\sqrt{2}$-1 | B. | $\sqrt{3}$-$\sqrt{2}$ | C. | $\frac{\sqrt{5}-1}{2}$ | D. | $\frac{3-2\sqrt{2}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | [0,e) | B. | (-∞,e) | C. | {e} | D. | (-∞,0)∪{e} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 64-4π | B. | 64+6π | C. | 48+4π | D. | 64-6π |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com