19.一批玉米種子,其發(fā)芽率是0.8.
(1)問:每穴至少種幾粒,才能保證每穴至少有一粒發(fā)芽的概率大于98%?
(2)若每穴種3粒,求恰好2粒發(fā)芽的概率.(參考數(shù)據(jù):lg2≈0.3010)

分析 (1)假設(shè)每穴種n粒,則根據(jù)每穴至少有一粒發(fā)芽的概率為1-0.2n≥98%,求得n的最小正整數(shù)值.
(2)利用n次獨(dú)立重復(fù)實(shí)驗(yàn)中恰好發(fā)生k次的概率計(jì)算公式,求得結(jié)果.

解答 解:(1)假設(shè)每穴種n粒,則根據(jù)每穴至少有一粒發(fā)芽的概率為1-0.2n≥98%,
求得n≥log0.20.02=$\frac{lg2-2}{lg2-1}$=$\frac{-1.699}{-0.699}$≈2.43,
故n的最小正值為3,即每穴3粒才能使至少有一粒發(fā)芽的概率大于98%.
(2)若每穴種3粒,則恰好2粒發(fā)芽的概率為${C}_{3}^{2}$•0.82•0.2=0.384.

點(diǎn)評(píng) 本題主要考查n次獨(dú)立重復(fù)實(shí)驗(yàn)中恰好發(fā)生k次的概率,等可能事件的概率,所求的事件的概率等于用1減去它的對(duì)立事件概率,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.某校選定甲、乙、丙、丁、戊共5名教師到3個(gè)邊遠(yuǎn)地區(qū)支教,每地至少1人,其中甲和乙一定不去同一地區(qū),甲和丙必須去同一地區(qū),則不同的選派方案共有(  )
A.27種B.30種C.33種D.36種

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.若函數(shù)f(x)=2sin(4x+φ)(φ<0)的圖象關(guān)于直線x=$\frac{π}{24}$對(duì)稱,則φ的最大值為( 。
A.-$\frac{5π}{3}$B.-$\frac{2π}{3}$C.-$\frac{π}{6}$D.-$\frac{5π}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知向量$\overrightarrow a,\overrightarrow b,\overrightarrow c$滿足:$|{\overrightarrow a}|=2,|{\overrightarrow b}|=4,\overrightarrow c=\overrightarrow a-\overrightarrow b$,且$\overrightarrow c⊥\overrightarrow a$
(1)求向量$\overrightarrow a$與$\overrightarrow b$的夾角;
(2)求$\overrightarrow a•(\overrightarrow a+3\overrightarrow b)$及$|{3\overrightarrow a+\overrightarrow b}|$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.在△ABC中,內(nèi)角A、B、C所對(duì)的邊分別為a,b,c,a2+b2=6abcosC,且sin2C=2sinAsinB.
(Ⅰ)求角C的值;
(Ⅱ)若點(diǎn)M是△ABC中角C的外角內(nèi)的一點(diǎn),且CM=2,過點(diǎn)M作MF⊥BC,ME⊥AC,垂足分別為F,E,求MF+ME的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知$f(x)=cos(x-\frac{π}{6})+cos(x+\frac{π}{6})$,則函數(shù)f(x)的最小正周期為2π,單調(diào)遞增區(qū)間為[2kπ-π,2kπ],k∈Z.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<π)是定義在R上的奇函數(shù),如圖是該函數(shù)在一個(gè)周期內(nèi)的圖象.其中P為圖象與x軸的交點(diǎn),Q為最低點(diǎn),R為最高點(diǎn),$\overrightarrow{PQ}$•$\overrightarrow{QR}$=0,S△PQR=$\frac{{π}^{2}}{2}$,則方程Asin(ωx+φ)=$\frac{π}{2}$|lgx|的根的個(gè)數(shù)為( 。
A.3B.4C.5D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.解不等式:2-|x|<$\sqrt{x+3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知(x+1)+(x+3)+(x+5)+…+(x+15)=96,則x=-$\frac{8}{5}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案