9.某校選定甲、乙、丙、丁、戊共5名教師到3個(gè)邊遠(yuǎn)地區(qū)支教,每地至少1人,其中甲和乙一定不去同一地區(qū),甲和丙必須去同一地區(qū),則不同的選派方案共有( 。
A.27種B.30種C.33種D.36種

分析 甲和丙同地,甲和乙不同地,所以有2、2、1和3、1、1兩種分配方案,再根據(jù)計(jì)數(shù)原理計(jì)算結(jié)果.

解答 解:因?yàn)榧缀捅,甲和乙不同地,所以?、2、1和3、1、1兩種分配方案,
①2、2、1方案:甲、丙為一組,從余下3人選出2人組成一組,然后排列:
共有:C32×A33=18種;
②3、1、1方案:在丁、戊中選出1人,與甲丙組成一組,然后排列:
共有:C21×A33=12種;
所以,選派方案共有18+12=30種.
故選:B.

點(diǎn)評(píng) 本題考查了分類技術(shù)原理,關(guān)鍵是分類,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.cosasin(a+$\frac{π}{6}$)+sinasin(a-$\frac{π}{3}$)=( 。
A.$\frac{1}{2}$B.-$\frac{1}{2}$C.$\frac{{\sqrt{3}}}{2}$D.-$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知F1,F(xiàn)2是橢圓$\frac{{x}^{2}}{4}+{y}^{2}$=1的兩個(gè)焦點(diǎn),A,B分別是該橢圓的左頂點(diǎn)和上頂點(diǎn),點(diǎn)P在線段AB上,則$\overrightarrow{P{F}_{1}}•\overrightarrow{P{F}_{2}}$的最小值為-$\frac{11}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.點(diǎn)P在直線3x+4y-10=0上,過點(diǎn)P作圓x2+y2=1的切線,切點(diǎn)為M,則$\overrightarrow{PM}$•$\overrightarrow{PO}$(O是坐標(biāo)原點(diǎn))的最小值是( 。
A.2B.$\sqrt{2}$C.$\sqrt{3}$D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知條件p:k=$\sqrt{3}$;條件q:直線y=kx+2與圓x2+y2=1相切,則¬p是¬q的( 。
A.充分必要條件B.必要不充分條件
C.必要不充分條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知數(shù)列{an}是等比數(shù)列,若a2=2,a3=-4,則a5等于( 。
A.8B.-8C.16D.-16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.關(guān)于函數(shù)f(x)=sin2x-cos2x有下列命題:
①函數(shù)y=f(x)的周期為π;
②直線x=$\frac{π}{4}$是y=f(x)圖象的一條對(duì)稱軸;
③點(diǎn)$({\frac{π}{8},\;0})$是y=f(x)圖象的一個(gè)對(duì)稱中心.
其中所有真命題的序號(hào)是①③.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.如果點(diǎn)P(x,y)在平面區(qū)域$\left\{\begin{array}{l}2x-y+2≥0\\ x-2y+1≤0\\ x+y-2≤0\end{array}\right.$上,則x2+(y+1)2的最大值和最小值分別是( 。
A.3,$\frac{3}{{\sqrt{5}}}$B.9,$\frac{9}{5}$C.9,2D.3,$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.一批玉米種子,其發(fā)芽率是0.8.
(1)問:每穴至少種幾粒,才能保證每穴至少有一粒發(fā)芽的概率大于98%?
(2)若每穴種3粒,求恰好2粒發(fā)芽的概率.(參考數(shù)據(jù):lg2≈0.3010)

查看答案和解析>>

同步練習(xí)冊(cè)答案