已知等差數(shù)列{an}的公差d≠0,它的前n項(xiàng)和為Sn,若S5=70,且a2,a7,a22成等比數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求數(shù)列{
1Sn
}
的前n項(xiàng)和為T(mén)n
分析:(1)依題意,列出關(guān)于等差數(shù)列{an}的首項(xiàng)與公差的方程組,解之即可求得數(shù)列{an}的通項(xiàng)公式;
(2)由(1)可得Sn=2n2+4n,利用裂項(xiàng)法可求得
1
Sn
=
1
4
1
n
-
1
n+2
),從而可求得數(shù)列{
1
Sn
}的前n項(xiàng)和為T(mén)n
解答:解:(1)∵數(shù)列{an}是等差數(shù)列且s5=70,
∴5a1+10d=70.①
∵a2,a7,a22成等比數(shù)列,
a72=a2•a22,即(a1+6d)2=(a1+d)(a1+21d).②
由①,②解得a1=6,d=4或a1=14,d=0(舍去).
∴an=4n+2.
(2)證明;由(1)得Sn=2n2+4n,
1
Sn
=
1
2n2+4n
=
1
4
1
n
-
1
n+2
).
∴Tn=
1
S1
+
1
S2
+
1
S3
+…+
1
Sn-1
+
1
Sn

=
1
4
[(1-
1
3
)+(
1
2
-
1
4
)+(
1
3
-
1
5
)+…+(
1
n-1
-
1
n+1
)+(
1
n
-
1
n+2
)]
=
3
8
-
1
4
1
n+1
+
1
n+2
).
點(diǎn)評(píng):本題考查數(shù)列的求和,著重考查等差數(shù)列與等比數(shù)列的通項(xiàng)公式,突出裂項(xiàng)法求和的考查,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等差數(shù)列{an},公差d不為零,a1=1,且a2,a5,a14成等比數(shù)列;
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)數(shù)列{bn}滿足bn=an3n-1,求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等差數(shù)列{an}中:a3+a5+a7=9,則a5=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等差數(shù)列{an}滿足:a5=11,a2+a6=18.
(1)求{an}的通項(xiàng)公式;
(2)若bn=an+q an(q>0),求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等差數(shù)列{an}滿足a2=0,a6+a8=-10
(1)求數(shù)列{an}的通項(xiàng)公式;     
(2)求數(shù)列{|an|}的前n項(xiàng)和;
(3)求數(shù)列{
an2n-1
}的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知等差數(shù)列{an}中,a4a6=-4,a2+a8=0,n∈N*
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)若{an}為遞增數(shù)列,請(qǐng)根據(jù)如圖的程序框圖,求輸出框中S的值(要求寫(xiě)出解答過(guò)程).

查看答案和解析>>

同步練習(xí)冊(cè)答案