1.隨機變量ξ的分布列為P(ξ=k)=$\frac{c}{k(1+k)}$,k=1.2.3,其中c為常數(shù),則P(ξ≥2)=$\frac{1}{3}$.

分析 由隨機變量ξ的分布列的性質求出c=$\frac{4}{3}$,再由P(ξ≥2)=P(ξ=2)+P(ξ=3)=1-P(ξ=1),利用對立事件概率計算公式能求出結果.

解答 解:∵隨機變量ξ的分布列為P(ξ=k)=$\frac{c}{k(1+k)}$,k=1.2.3,其中c為常數(shù),
∴$\frac{c}{1×(1+1)}+\frac{c}{2×(1+2)}+\frac{c}{3×(1+3)}$=1,
解得c=$\frac{4}{3}$,
∴P(ξ≥2)=P(ξ=2)+P(ξ=3)=1-P(ξ=1)
=1-$\frac{\frac{4}{3}}{2}$=$\frac{1}{3}$.
故答案為:$\frac{1}{3}$.

點評 本題考查概率的求法,是中檔題,解題時要認真審題,注意離散型隨機變量的分布列的性質的合理運用.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

11.已知全集U={x∈N|1≤x≤6},集合A={x|x2-6x+8=0},集合B={3,4,5,6}.
(1)求A∩B,A∪B;
(2)寫出集合(∁UA)∩B的所有子集.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.已知電流I與時間t的關系式為I=Asin(ωt+φ).
(1)如圖是I=Asin(ωt+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)在一個周期內的圖象,根據(jù)圖中數(shù)據(jù)求I=Asin(ωt+φ)的解析式;
(2)如果t在任意一段$\frac{1}{150}$秒的時間內,電流I=Asin(ωt+φ)都能取得最大值,那么ω的最小正整數(shù)值是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.下列各組函數(shù)中,兩個函數(shù)相同的是( 。
A.y=($\root{3}{x}$)3和y=xB.y=($\sqrt{x}$)2和y=xC.y=$\sqrt{x^2}$和y=($\sqrt{x}$)2D.y=$\root{3}{x^3}$和y=$\frac{x^2}{x}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.設函數(shù)f(x)=$\overrightarrow a$•$\overrightarrow b$,其中向量$\overrightarrow a$=(2cosx,$\sqrt{3}$cosx),$\overrightarrow b$=(cosx,2sinx).
(Ⅰ)求函數(shù)f(x)的最小正周期和單調遞增區(qū)間;
(Ⅱ)△ABC中,角A,B,C的對邊分別為a,b,c,且a2+b2-c2≥ab,求f(C)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.若曲線y=x2+mx+n在點(0,n)處的切線方程是x-y+1=0,則( 。
A.m=-1,n=1B.m=1,n=1C.m=1,n=-1D.m=-1,n=-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.集合A={1,2,3,4},集合B={1,4,7},則A∩B=( 。
A.{ 7 }B.{1,3}C.{1,4}D.{1,2,3,4,7}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.函數(shù)y=$\frac{\sqrt{2x+1}}{x-2}$的定義域是{x|x≥-$\frac{1}{2}$且x≠2}.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.已知函數(shù)$f(x)=\frac{2}{{{e^x}+1}}+sinx$,其導函數(shù)記為f′(x),則f(2016)+f(-2016)+f′(2016)-f′(-2016)的值為2.

查看答案和解析>>

同步練習冊答案