16.設函數(shù)f(x)=$\overrightarrow a$•$\overrightarrow b$,其中向量$\overrightarrow a$=(2cosx,$\sqrt{3}$cosx),$\overrightarrow b$=(cosx,2sinx).
(Ⅰ)求函數(shù)f(x)的最小正周期和單調遞增區(qū)間;
(Ⅱ)△ABC中,角A,B,C的對邊分別為a,b,c,且a2+b2-c2≥ab,求f(C)的取值范圍.

分析 (I)利用倍角公式、和差公式可得f(x),再利用周期性與單調性即可得出.
(II)利用余弦定理、三角函數(shù)的單調性即可得出.

解答 解:(Ⅰ)∵$f(x)=2{cos^2}x+\sqrt{3}sin2x=2sin(2x+\frac{π}{6})+1$,
∴$函數(shù)f(x)的最小正周期T=\frac{2π}{2}=π$
由$-\frac{π}{2}+2kπ≤2x+\frac{π}{6}≤\frac{π}{2}+2kπ(k∈Z)$,則$-\frac{π}{3}+kπ≤x≤\frac{π}{6}+kπ(k∈z)$.
得f(x)在R上單調遞增區(qū)間為[$-\frac{π}{3}+kπ,\frac{π}{6}+kπ$](k∈z).
(Ⅱ)a2+b2-c2≥ab,$cosC≥\frac{1}{2}$,
∴$0<C≤\frac{π}{3}$,
$由f(C)=2sin(2C+\frac{π}{6})+1$,$\frac{π}{6}<2C+\frac{π}{6}≤\frac{5π}{6}$,$當C=\frac{π}{6}時,f{(C)_{max}}=3$.
當C=$\frac{π}{3}$時,f(C)min=2,∴f(C)∈[2,3].

點評 本題考查了三角函數(shù)的圖象與性質、倍角公式、和差公式,考查了推理能力與計算能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

6.函數(shù)f(x)=x2-mx+c,當x∈(-∞,1)時是減函數(shù),則m的取值范圍是m≥2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.已知sin(α+π)=$\frac{4}{5}$,且sinαcosα<0,求3sin2(2π-α)+4cos2(π+α)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.某地要舉行一次大型國際博覽會,為使志愿者較好地服務于大會,主辦方?jīng)Q定對40名志愿者進行一次考核.考核分為兩個科目:“地域文化”和“志愿者知識”,其中“地域文化”的考核成績分為10分、8分、6分、4分共四個檔次,“志愿者知識”的考核分為A、B、C、D共四個等級.這40名志愿者的考核結果如表:
分值
           等級           
人數(shù)
10分8分6分4分
A5170
B3271
C1063
D1120
(Ⅰ)從“志愿者知識”等級A中挑選2人,求這2人的“地域文化”考核得分均不小于8分的概率;
(Ⅱ)從“地域文化”考核成績?yōu)?0分的志愿者中挑選3人,記這3人中“志愿者知識”考核結果為A等級的人數(shù)為X,求隨機變量X的分布列及數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.函數(shù)y=3cos($\frac{π}{3}$-2x)的單調減區(qū)間是[kπ+$\frac{π}{6}$,kπ+$\frac{2π}{3}$],k∈Z.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.隨機變量ξ的分布列為P(ξ=k)=$\frac{c}{k(1+k)}$,k=1.2.3,其中c為常數(shù),則P(ξ≥2)=$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.某邊長為1的正方體展開圖如圖所示,在原正方體中,△ABC的面積為$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.我們在高中階段學習了六個三角比,則函數(shù)f(θ)=|sinθ+cosθ+tanθ+cotθ+secθ+cscθ|的最小值是2$\sqrt{2}$-1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.若直線2ax+by-2=0,(a>0,b>0)平分圓x2+y2-2x-4y-6=0,則$\frac{1}{a}+\frac{2}$的最小值是$3+2\sqrt{2}$.

查看答案和解析>>

同步練習冊答案