【題目】在平面內(nèi),將一個(gè)圖形繞一點(diǎn)按某個(gè)方向轉(zhuǎn)動(dòng)一個(gè)角度,這樣的運(yùn)動(dòng)叫做圖形的旋轉(zhuǎn),如圖,小盧利用圖形的旋轉(zhuǎn)設(shè)計(jì)某次活動(dòng)的徽標(biāo),他將邊長(zhǎng)為a的正三角形ABC 繞其中心O逆時(shí)針旋轉(zhuǎn)到三角形A1B1C1,且.順次連結(jié)A,A1,B,B1,C,C1,A,得到六邊形徽標(biāo)AA1BB1CC1 .
(1)當(dāng)=時(shí),求六邊形徽標(biāo)的面積;
(2)求六邊形徽標(biāo)的周長(zhǎng)的最大值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),既存在極大值,又存在極小值.
(1)求實(shí)數(shù)的取值范圍;
(2)當(dāng)時(shí),,分別為的極大值點(diǎn)和極小值點(diǎn).且,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如果對(duì)于函數(shù)f(x)定義域內(nèi)任意的兩個(gè)自變量的值x1,x2,當(dāng)x1<x2時(shí),都有f(x1)≤f(x2),且存在兩個(gè)不相等的自變量值y1,y2,使得f(y1)=f(y2),就稱f(x)為定義域上的不嚴(yán)格的增函數(shù).則①,②,③,④,四個(gè)函數(shù)中為不嚴(yán)格增函數(shù)的是_____,若已知函數(shù)g(x)的定義域、值域分別為A、B,A={1,2,3},BA,且g(x)為定義域A上的不嚴(yán)格的增函數(shù),那么這樣的g(x)有_____個(gè).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修:不等式選講
已知函數(shù)f(x)=|2x+3|+|2x﹣1|.
(Ⅰ)求不等式f(x)<8的解集;
(Ⅱ)若關(guān)于x的不等式f(x)≤|3m+1|有解,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)求的圖像在處的切線方程;
(2)求函數(shù)的極大值;
(3)若對(duì)恒成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某客戶考察了一款熱銷(xiāo)的凈水器,使用壽命為十年,改款凈水器為三級(jí)過(guò)濾,每一級(jí)過(guò)濾都由核心部件濾芯來(lái)實(shí)現(xiàn).在使用過(guò)程中,一級(jí)濾芯需要不定期更換,其中每更換個(gè)一級(jí)濾芯就需要更換個(gè)二級(jí)濾芯,三級(jí)濾芯無(wú)需更換.其中一級(jí)濾芯每個(gè)元,二級(jí)濾芯每個(gè)元.記一臺(tái)凈水器在使用期內(nèi)需要更換的二級(jí)濾芯的個(gè)數(shù)構(gòu)成的集合為.如圖是根據(jù)臺(tái)該款凈水器在十年使用期內(nèi)更換的一級(jí)濾芯的個(gè)數(shù)制成的柱狀圖.
(1)結(jié)合圖,寫(xiě)出集合;
(2)根據(jù)以上信息,求出一臺(tái)凈水器在使用期內(nèi)更換二級(jí)濾芯的費(fèi)用大于元的概率(以臺(tái)凈水器更換二級(jí)濾芯的頻率代替臺(tái)凈水器更換二級(jí)濾芯發(fā)生的概率);
(3)若在購(gòu)買(mǎi)凈水器的同時(shí)購(gòu)買(mǎi)濾芯,則濾芯可享受折優(yōu)惠(使用過(guò)程中如需再購(gòu)買(mǎi)無(wú)優(yōu)惠).假設(shè)上述臺(tái)凈水器在購(gòu)機(jī)的同時(shí),每臺(tái)均購(gòu)買(mǎi)個(gè)一級(jí)濾芯、個(gè)二級(jí)濾芯作為備用濾芯(其中,),計(jì)算這臺(tái)凈水器在使用期內(nèi)購(gòu)買(mǎi)濾芯所需總費(fèi)用的平均數(shù).并以此作為決策依據(jù),如果客戶購(gòu)買(mǎi)凈水器的同時(shí)購(gòu)買(mǎi)備用濾芯的總數(shù)也為個(gè),則其中一級(jí)濾芯和二級(jí)濾芯的個(gè)數(shù)應(yīng)分別是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xoy中,以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系。已知曲線C的極坐標(biāo)方程為,過(guò)點(diǎn)的直線l的參數(shù)方程為(為參數(shù)),直線l與曲線C交于M、N兩點(diǎn)。
(1)寫(xiě)出直線l的普通方程和曲線C的直角坐標(biāo)方程:
(2)若成等比數(shù)列,求a的值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校舉行運(yùn)動(dòng)會(huì),其中三級(jí)跳遠(yuǎn)的成績(jī)?cè)?/span>米以上的進(jìn)入決賽,把所得的成績(jī)進(jìn)行整理后,分成組畫(huà)出頻率分布直方圖的一部分(如圖),已知第組的頻數(shù)是.
(1)求進(jìn)入決賽的人數(shù);
(2)用樣本的頻率代替概率,記表示兩人中進(jìn)入決賽的人數(shù),求得分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】依照某發(fā)展中國(guó)家2018年的官方資料,將該國(guó)所有家庭按年收入從低到高的順序平均分為五組,依次為第一組至第五組,各組家庭的年收入總和占該國(guó)全部家庭的年收入總和的百分比如圖所示.
以下關(guān)于該國(guó)2018年家庭收入的判斷,一定正確的是( )
A. 至少有的家庭的年收入都低于全部家庭的平均年收入
B. 收入最低的那的家庭平均年收入為全部家庭平均年收入的
C. 收入最高的那的家庭年收入總和超過(guò)全部家庭年收入總和的
D. 收入最低的那的家庭年收入總和超過(guò)全部家庭年收入總和的
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com