解方程組:
C
y
x
=
C
2y
x
C
y+1
x
=
7
2
C
y-1
x
考點:組合及組合數(shù)公式
專題:計算題
分析:根據(jù)題意,由①式可得x=3y,將其代入②式,變形可得關(guān)于y的方程,解可得y的值,由x=3y可得答案.
解答: 解:根據(jù)題意,
C
y
x
=
C
2y
x
C
y+1
x
=
7
2
C
y-1
x
,
C
y
x
=
C
2y
x
可得,x=y+2y=3y或y=0(舍去),③
將③代入②可得:
C
y+1
3y
=
7
2
C
y-1
3y
,
(3y)!
(3y-y-1)!×(y+1)!
=
7
2
(3y)!
(3y-y+1)!×(y-1)!
;
變形可得7y+7=8y+4,
解可得y=3,x=3y=9;
故該方程組的解為
x=9
y=3
點評:本題考查組合數(shù)公式的計算與應(yīng)用,靈活運用組合數(shù)公式是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(α)=
sin(2π-α)cos(π+α)cos(
π
2
-α)
cos(π-α)sin(π-α)sin(
2
)
,化簡并求f(
π
4
)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)的定義域是(0,4),求函數(shù)f(x2)的定義域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)為奇函數(shù),且f(x+3)=f(x),f(2)=
2m-3
m+1
,f(1)>1,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某通訊公司需要在三角形地帶OAC區(qū)域內(nèi)建造甲、乙兩種通信信號加強中轉(zhuǎn)站,甲中轉(zhuǎn)站建在區(qū)域BOC內(nèi),乙中轉(zhuǎn)站建在區(qū)域AOB內(nèi).分界線OB固定,且OB=
(1+
3
)百米,邊界線AC始終過點B,邊界線OA、OC滿足∠AOC=75°,∠AOB=30°,∠BOC=45°.設(shè)OA=x(3≤x≤6)百米,OC=y百米.
(1)試將y表示成x的函數(shù),并求出函數(shù)y的解析式;
(2)當(dāng)x取何值時?整個中轉(zhuǎn)站的占地面積S△OAC最小,并求出其面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知,一圓經(jīng)過坐標原點和點P(1,1),并且圓心在直線2x+3y+1=0上,求圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,圓C:(x+2)2+y2=36,P是圓C上的任意一動點,A點坐標為(2,0),線段PA的垂直平分線l與半徑CP交于點Q.
(1)求點Q的軌跡G的方程;
(2)已知B,D是軌跡G上不同的兩個任意點,M為BD的中點.①若M的坐標為M(2,1),求直線BD所在的直線方程;②若BD不經(jīng)過原點,且不垂直于x軸,點O為軌跡G的中心.
求證:直線BD和直線OM的斜率之積是常數(shù)(定值).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若對任意實數(shù)x,都有|x-a|+|x-1|≥3成立,則實數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合A={x||x-3|+|x-4|<a},B={x||x2-6x+5≤0},若A∩B=B,則實數(shù)a的取值范圍為
 

查看答案和解析>>

同步練習(xí)冊答案