【題目】已知橢圓C:()的左、右焦點(diǎn)分別為,,離心率,點(diǎn)在橢圓C上,直線l過交橢圓于A,B兩點(diǎn).
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)當(dāng)時,點(diǎn)A在x軸上方時,求點(diǎn)A,B的坐標(biāo);
(3)若直線交y軸于點(diǎn)M,直線交y軸于點(diǎn)N,是否存在直線l,使得與的面積滿足,若存在,求出直線l的方程;若不存在,請說明理由.
【答案】(1);(2),;(3)存在,或
【解析】
(1)由和點(diǎn)在橢圓上結(jié)合可求出橢圓的方程.
(2)設(shè),,則,結(jié)合點(diǎn)A在橢圓上可求出A點(diǎn)坐標(biāo),然后可得直線AB的方程,再與橢圓聯(lián)立可求出B點(diǎn)坐標(biāo).
(3)設(shè),,,,設(shè)直線l:,,.由建立關(guān)于 的方程從而求解.
解:(1)由題意可知,,,又,
聯(lián)立方程組可解得:,,
所以橢圓C的方程為.
(2)設(shè),依題意,,,
,即,
,
又A在橢圓上,滿足,即,
,解得,即,
直線AB:,
聯(lián)立,解得.
(3)設(shè),,,,
直線l:(斜率不存在時不滿足題意),
則,
.
聯(lián)立,得.
則,.
由直線的方程:,得M縱坐標(biāo).
由直線的方程:,得N縱坐標(biāo),
由,得.
所以,
,,
代入根與系數(shù)的關(guān)系式,得,解得.
存在直線或滿足題意.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某網(wǎng)絡(luò)平臺從購買該平臺某課程的客戶中,隨機(jī)抽取了100位客戶的數(shù)據(jù),并將這100個數(shù)據(jù)按學(xué)時數(shù),客戶性別等進(jìn)行統(tǒng)計(jì),整理得到如表:
學(xué)時數(shù) |
| ||||||
男性 | 18 | 12 | 9 | 9 | 6 | 4 | 2 |
女性 | 2 | 4 | 8 | 2 | 7 | 13 | 4 |
(1)根據(jù)上表估計(jì)男性客戶購買該課程學(xué)時數(shù)的平均值(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表,結(jié)果保留小數(shù)點(diǎn)后兩位);
(2)從這100位客戶中,對購買該課程學(xué)時數(shù)在20以下的女性客戶按照分層抽樣的方式隨機(jī)抽取7人,再從這7人中隨機(jī)抽取2人,求這2人購買的學(xué)時數(shù)都不低于15的概率.
(3)將購買該課程達(dá)到25學(xué)時及以上者視為“十分愛好該課程者”,25學(xué)時以下者視,為“非十分愛好該課程者”.請根據(jù)已知條件完成以下列聯(lián)表,并判斷是否有99.9%的把握認(rèn)為“十分愛好該課程者”與性別有關(guān)?
非十分愛好該課程者 | 十分愛好該課程者 | 合計(jì) | |
男性 | |||
女性 | |||
合計(jì) | 100 |
附:,
| 0.100 | 0.050 | 0.025 | 0.010 | 0.001 |
2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐的底面為直角梯形,,且,,,平面底面,為的中點(diǎn),為等邊三角形,是棱上的一點(diǎn),設(shè)(與不重合).
(1)若平面,求的值;
(2)當(dāng)時,求二面角的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知正方形ABCD和矩形ACEF所在的平面互相垂直,,M是線段EF的中點(diǎn),二面角的大小為60°.
(1)求證:平面BDE;
(2)試在線段AC上找一點(diǎn)P,使得PF與CD所成的角是60°.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知的內(nèi)角、、的對邊分別為、、,為內(nèi)一點(diǎn),若分別滿足下列四個條件:
①;
②;
③;
④;
則點(diǎn)分別為的( )
A.外心、內(nèi)心、垂心、重心B.內(nèi)心、外心、垂心、重心
C.垂心、內(nèi)心、重心、外心D.內(nèi)心、垂心、外心、重心
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在長方體中,,點(diǎn)為線段上的動點(diǎn),則下列結(jié)論正確的是( )
A.當(dāng)時,三點(diǎn)共線
B.當(dāng)時,
C.當(dāng)時,平面
D.當(dāng)時,平面
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,兩鐵路線垂直相交于站,若已知千米,甲火車從站出發(fā),沿方向以千米小時的速度行駛,同時乙火車從站出發(fā),沿方向,以千米小時的速度行駛,至站即停止前行(甲車扔繼續(xù)行駛)(兩車的車長忽略不計(jì)).
(1)求甲、乙兩車的最近距離(用含的式子表示);
(2)若甲、乙兩車開始行駛到甲,乙兩車相距最近時所用時間為小時,問為何值時最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)務(wù)極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,曲線,
(1)求曲線,的直角坐標(biāo)方程;
(2)曲線和的交點(diǎn)為,,求以為直徑的圓與軸的交點(diǎn)坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com