已知分別是橢圓的左,右頂點,點在橢圓 上,且直線與直線的斜率之積為.
(1)求橢圓的標準方程;
(2)點為橢圓上除長軸端點外的任一點,直線,與橢圓的右準線分別交于點,.
①在軸上是否存在一個定點,使得?若存在,求點的坐標;若不存在,說明理由;
②已知常數(shù),求的取值范圍.
(1);(2)①存在點的坐標為,②.
【解析】
試題分析:(1)利用題目條件建立關于a,b,c的方程組,解方程組即可;
(2)①對于存在性問題,可以先假設點存在,然后根據(jù)以及點P在橢圓上直線,與橢圓的右準線分別交于點,等相關條件建立方程,看看點E的橫坐標是不是定值,如果是即為所求,如果不是也就說明了不存在;②利用向量的坐標運算,計算, ,進而求出的表達式,在利用函數(shù)知識求取值范圍.
試題解析:(1)由題意得,,
, ∴,
由點在橢圓C上,則有:
, 2分
由以上兩式可解得.
∴橢圓方程為. 4分
(2)①橢圓右準線的方程為. 5分
假設存在一個定點,使得.設點().
直線的方程為,令,,∴點坐標為.
直線的方程為,令,,
∴點坐標為. 7分
若,則,∵ ,,
∴. 9分
∵點在橢圓上,∴,∴ ,代入上式,得 ,
∴,∴點的坐標為. 11分
②∵, ,
∴.
∵,,∴.
∴ . 13分
設函數(shù),定義域為,
當時,即時,在上單調(diào)遞減,的取值范圍為,
當時,即時,在上單調(diào)遞減,在上單調(diào)遞增,的取值范圍為 .
綜上,當時,的取值范圍為,
當時,的取值范圍為. 16分
考點:(1)橢圓的標準方程;(2)向量的坐標運算;(3)函數(shù)的單調(diào)性求值域.
科目:高中數(shù)學 來源:2015屆江西省宜春市高二上學期期末統(tǒng)考文科數(shù)學試卷(解析版) 題型:選擇題
各項都是正數(shù)的等比數(shù)列的公比,且成等差數(shù)列,則 的值為( )
A. B.
C. D.或
查看答案和解析>>
科目:高中數(shù)學 來源:2015屆江西南昌市四校高二上學期期末聯(lián)考理科數(shù)學試卷(解析版) 題型:選擇題
已知 ,則S1,S2,S3的大小關系為( )
A. S1<S2<S3 B.S2<S1<S3 C. S2<S3<S1 D.. S3<S2<S1
查看答案和解析>>
科目:高中數(shù)學 來源:2015屆江西南昌市四校高二上學期期末聯(lián)考文科數(shù)學試卷(解析版) 題型:填空題
若函數(shù)在處取極值,則a=________.
查看答案和解析>>
科目:高中數(shù)學 來源:2015屆江西南昌市四校高二上學期期末聯(lián)考文科數(shù)學試卷(解析版) 題型:選擇題
若函數(shù)在R上可導,且,則( )
A. B. C. D. 不能確定
查看答案和解析>>
科目:高中數(shù)學 來源:2015屆江蘇省常州市高二上學期期末考試理科數(shù)學試卷(解析版) 題型:解答題
已知為實數(shù),:點在圓的內(nèi)部; :都有.
(1)若為真命題,求的取值范圍;
(2)若為假命題,求的取值范圍;
(3)若“且”為假命題,且“或”為真命題,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源:2015屆江蘇省常州市高二上學期期末考試理科數(shù)學試卷(解析版) 題型:填空題
已知點P在拋物線上運動,F為拋物線的焦點,點M的坐標為(3,2),當PM+PF取最小值時點P的坐標為 .
查看答案和解析>>
科目:高中數(shù)學 來源:2015屆江蘇省常州市高二上學期期末考試理科數(shù)學試卷(解析版) 題型:填空題
如圖,在三棱錐中,,,,,則BC和平面ACD所成角的正弦值為 .
查看答案和解析>>
科目:高中數(shù)學 來源:2015屆江蘇省儀征市高二第一學期期末考試數(shù)學試卷(解析版) 題型:填空題
函數(shù)的單調(diào)減區(qū)間為___________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com