證明下列命題.

(1)若函數(shù)f(x)可導(dǎo)且為周期函數(shù),則f′(x)也為周期函數(shù);

(2)可導(dǎo)的奇函數(shù)的導(dǎo)函數(shù)是偶函數(shù).

證明:(1)設(shè)f(x)的周期為T,則f(x)=f(x+T).

∴f′(x)=[f(x+T)]′=f′(x+T)·(x+T)′=f′(x+T),即f′(x)為周期函數(shù)且周期與f(x)的周期相同.

(2)∵f(x)為奇函數(shù),

∴f(-x)=-f(x).

∴[f(-x)]′=[-f(x)]′.

∴f′(-x)·(-x)′=-f′(x).

∴f′(-x)=f′(x),即f′(x)為偶函數(shù).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系中,橫坐標(biāo)、縱坐標(biāo)均為有理數(shù)的點稱為有理點.試根據(jù)這一定義,證明下列命題:若直線y=kx+b(k≠0)經(jīng)過點M(
2
,1),則此直線不能經(jīng)過兩個有理點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•閘北區(qū)一模)假設(shè)你已經(jīng)學(xué)習(xí)過指數(shù)函數(shù)的基本性質(zhì)和反函數(shù)的概念,但還沒有學(xué)習(xí)過對數(shù)的相關(guān)概念.由指數(shù)函數(shù)f(x)=ax(a>0且a≠1)在實數(shù)集R上是單調(diào)函數(shù),可知指數(shù)函數(shù)f(x)=ax(a>0且a≠1)存在反函數(shù)y=f-1(x),x∈(0,+∞).請你依據(jù)上述假設(shè)和已知,在不涉及對數(shù)的定義和表達(dá)形式的前提下,證明下列命題:
(1)對于任意的正實數(shù)x1,x2,都有f-1(x1x2)=f-1(x1)+f-1(x2);
(2)函數(shù)y=f-1(x)是單調(diào)函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

假設(shè)你已經(jīng)學(xué)習(xí)過指數(shù)函數(shù)的基本性質(zhì)和反函數(shù)的概念,但還沒有學(xué)習(xí)過對數(shù)的相關(guān)概念.由指數(shù)函數(shù)f(x)=ax(a>0且a≠1)在實數(shù)集R上是單調(diào)函數(shù),可知指數(shù)函數(shù)f(x)=ax(a>0且a≠1)存在反函數(shù)y=f-1(x),x∈(0,+∞).請你依據(jù)上述假設(shè)和已知,在不涉及對數(shù)的定義和表達(dá)形式的前提下,證明下列命題:
(1)對于任意的正實數(shù)x1,x2,都有f-1(x1x2)=數(shù)學(xué)公式;
(2)函數(shù)y=f-1(x)是單調(diào)函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:閘北區(qū)一模 題型:解答題

假設(shè)你已經(jīng)學(xué)習(xí)過指數(shù)函數(shù)的基本性質(zhì)和反函數(shù)的概念,但還沒有學(xué)習(xí)過對數(shù)的相關(guān)概念.由指數(shù)函數(shù)f(x)=ax(a>0且a≠1)在實數(shù)集R上是單調(diào)函數(shù),可知指數(shù)函數(shù)f(x)=ax(a>0且a≠1)存在反函數(shù)y=f-1(x),x∈(0,+∞).請你依據(jù)上述假設(shè)和已知,在不涉及對數(shù)的定義和表達(dá)形式的前提下,證明下列命題:
(1)對于任意的正實數(shù)x1,x2,都有f-1(x1x2)=f-1(x1)+f-1(x2);
(2)函數(shù)y=f-1(x)是單調(diào)函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013年上海市閘北區(qū)高考數(shù)學(xué)一模試卷(理科)(解析版) 題型:解答題

假設(shè)你已經(jīng)學(xué)習(xí)過指數(shù)函數(shù)的基本性質(zhì)和反函數(shù)的概念,但還沒有學(xué)習(xí)過對數(shù)的相關(guān)概念.由指數(shù)函數(shù)f(x)=ax(a>0且a≠1)在實數(shù)集R上是單調(diào)函數(shù),可知指數(shù)函數(shù)f(x)=ax(a>0且a≠1)存在反函數(shù)y=f-1(x),x∈(0,+∞).請你依據(jù)上述假設(shè)和已知,在不涉及對數(shù)的定義和表達(dá)形式的前提下,證明下列命題:
(1)對于任意的正實數(shù)x1,x2,都有f-1(x1x2)=;
(2)函數(shù)y=f-1(x)是單調(diào)函數(shù).

查看答案和解析>>

同步練習(xí)冊答案