精英家教網 > 高中數學 > 題目詳情

把長為10cm的細鐵絲截成兩段,各自圍成一個正方形,求這兩個正方形面積之和的最小值。

解析試題分析:設出其中一段的長為,表示出另一段的長,從而得正方形面積表示式為二次函數即可求解,
但要注意自變量得取值范圍,即函數定義域。
試題解析:設鐵絲一段長 ,,兩正方形面積之和為,      3分
則另一段鐵絲長,       5分
依題意,,      10分
時,取最大值.      13分
答:(略)      14分
考點:二次函數最值.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

求值:
(1)
(2)

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

“城中觀!笔墙陙韲鴥群芏啻笾行统鞘袃葷乘碌默F(xiàn)象,究其原因,除天氣因素、城市規(guī)劃等原因外,城市垃圾雜物也是造成內澇的一個重要原因。暴雨會沖刷城市的垃圾雜物一起進入下水道,據統(tǒng)計,在不考慮其它因素的條件下,某段下水道的排水量V(單位:立方米/小時)是雜物垃圾密度x(單位:千克/立方米)的函數。當下水道的垃圾雜物密度達到2千克/立方米時,會造成堵塞,此時排水量為0;當垃圾雜物密度不超過0.2千克/立方米時,排水量是90立方米/小時;研究表明,時,排水量V是垃圾雜物密度x的一次函數。
(Ⅰ)當時,求函數V(x)的表達式;
(Ⅱ)當垃圾雜物密度x為多大時,垃圾雜物量(單位時間內通過某段下水道的垃圾雜物量,單位:千克/小時)可以達到最大,求出這個最大值。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知的值域為集合,的定義域為集合,其中。(1)當,求;(2)設全集為R,若,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知一企業(yè)生產某產品的年固定成本為10萬元,每生產千件需另投入2.7萬元,設該企業(yè)年內共生產此種產品千件,并且全部銷售完,每千件的銷售收入為萬元,且
(1)寫出年利潤(萬元)關于年產品(千件)的函數解析式;
(2)年產量為多少千件時,該企業(yè)生產此產品所獲年利潤最大?
(注:年利潤=年銷售收入-年總成本)

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知冪函數為偶函數,且在區(qū)間上是單調增函數
(1)求函數的解析式;
(2)設函數,其中.若函數僅在處有極值,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

某工廠有名工人,現(xiàn)接受了生產型高科技產品的總任務.已知每臺型產品由型裝置和型裝置配套組成,每個工人每小時能加工型裝置或型裝置.現(xiàn)將工人分成兩組同時開始加工,每組分別加工一種裝置(完成自己的任務后不再支援另一組).設加工型裝置的工人有人,他們加工完型裝置所需時間為,其余工人加工完型裝置所需時間為(單位:小時,可不為整數).
(1)寫出、的解析式;
(2)寫出這名工人完成總任務的時間的解析式;
(3)應怎樣分組,才能使完成總任務用的時間最少?

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數滿足對任意實數都有成立,且當時,,.
(1)求的值;
(2)判斷上的單調性,并證明;
(3)若對于任意給定的正實數,總能找到一個正實數,使得當時,,則稱函數處連續(xù)。試證明:處連續(xù).

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

定義在R上的奇函數有最小正周期4,且時,。
(1)求上的解析式;
(2)判斷上的單調性,并給予證明;
(3)當為何值時,關于方程上有實數解?

查看答案和解析>>

同步練習冊答案