4.運行如圖所示的程序框圖.若輸入x=5,則輸出y的值為(  )
A.49B.25C.33D.7

分析 執(zhí)行程序框圖,依次寫出每次循環(huán)得到的x,y的值,第三次執(zhí)行循環(huán)體得到y(tǒng)=33,執(zhí)行是,則輸出y=33.

解答 解:若輸入x=5,第一次執(zhí)行循環(huán)體得到y(tǒng)=9,執(zhí)行否,則x=9;
第二次執(zhí)行循環(huán)體得到y(tǒng)=17,執(zhí)行否,則x=17;
第三次執(zhí)行循環(huán)體得到y(tǒng)=33,執(zhí)行是,則輸出y=33.
故選:C.

點評 本題主要考查了算法和程序框圖,屬于基本知識的考查.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

14.在平面直角坐標系中,O為坐標原點,從單位圓外一點A引圓O的兩條切線,切點分別為B1,B2,若滿足條件|$\overrightarrow{c}$-($\overrightarrow{O{B}_{1}}$+$\overrightarrow{O{B}_{2}}$)|=|$\overrightarrow{O{B}_{1}}$-$\overrightarrow{O{B}_{2}}$|的向量$\overrightarrow{c}$的模最大時,則$\overrightarrow{A{B}_{1}}$•$\overrightarrow{A{B}_{2}}$=0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.已知|$\overrightarrow a$|=4,|$\overrightarrow b$|=8,$\overrightarrow a$與$\overrightarrow b$的夾角是120°.
(1)計算:|$\overrightarrow a$+$\overrightarrow b$|
(2)當k為何值時,($\overrightarrow a$+2$\overrightarrow b$)⊥(k$\overrightarrow a$-$\overrightarrow b$)?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.(1)求經(jīng)過點的P($\frac{\sqrt{6}}{3}$,$\sqrt{3}$),Q($\frac{2\sqrt{2}}{3}$,1)的橢圓的標準方程;
(2)求與橢圓$\frac{{x}^{2}}{49}$+$\frac{{y}^{2}}{24}$=1有公共焦點,且離心率e=$\frac{5}{4}$的雙曲線的標準方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.關(guān)于f(x)=3sin(2x+$\frac{π}{4}$)有以下命題,
①若f(x1)=f(x2)=0,則x1-x2=kπ(k∈Z);
②f(x)圖象與g(x)=3cos(2x-$\frac{π}{4}$)圖象相同;
③f(x)在區(qū)間[-$\frac{7π}{8}$,-$\frac{3π}{8}$]是減函數(shù);
④f(x)圖象關(guān)于點(-$\frac{π}{8}$,0)對稱.
其中正確的命題序號是( 。
A.②③④B.①④C.①②③D.②③

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.數(shù)列{an}的前n項和為Sn,且滿足:若Sn=$\frac{3}{2}$-$\frac{1}{2}$an(n∈N*).
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)設(shè)數(shù)列{bn}的各項為正,且滿足bn≤$\frac{{a}_{n}_{n-1}}{{a}_{n}+_{n-1}}$,b1=1,求證:bn≤1(n∈N*

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.進位制轉(zhuǎn)化:1101(2)=13(10)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.已知命題p:x2+2x-3>0;命題q:$\frac{1}{3-x}$>1,若“¬q且p”為真,則x的取值范圍是(-∞,-3)∪(1,2]∪[3,+∞).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.有下列五個命題:
①函數(shù)y=4cos2x,x∈[-10π,10π]不是周期函數(shù);
②已知定義域為R的奇函數(shù)f(x),滿足f(x+3)=f(x),當x∈(0,$\frac{3}{2}$)時,f(x)=sinπx,則函數(shù)f(x)在區(qū)間[0,6]上的零點個數(shù)是9;
③為了得到函數(shù)y=-cos2x的圖象,可以將函數(shù)y=sin(2x-$\frac{π}{6}$)的圖象向左平移$\frac{π}{6}$;
④已知函數(shù)f(x)=x-sinx,若x1,x2∈[-$\frac{π}{2}$,$\frac{π}{2}}$]且f(x1)+f(x2)>0,則x1+x2>0;
⑤設(shè)曲線f(x)=acosx+bsinx的一條對稱軸為x=$\frac{π}{5}$,則點($\frac{2π}{5}$,0)為曲線y=f($\frac{π}{10}$-x)的一個對稱中心.
其中正確命題的序號是①②④⑤.

查看答案和解析>>

同步練習冊答案