已知0<α<π,tanα=-2,化簡:
2cos(
π
2
+α)-cos(π-α)
sin(
π
2
-α)-3sin(π+α)
,并求值.
考點:運用誘導公式化簡求值,同角三角函數(shù)基本關系的運用
專題:三角函數(shù)的求值
分析:由條件利用誘導公式把要求的式子化為
-2sinα+cosα
cosα+3sinα
,再利用同角三角函數(shù)的基本關系化為
-2tanα+1
1+3tanα
,再把tanα=-2代入運算求得結果.
解答: 解:∵0<α<π,tanα=-2,∴
2cos(
π
2
+α)-cos(π-α)
sin(
π
2
-α)-3sin(π+α)
=
-2sinα+cosα
cosα+3sinα
=
-2tanα+1
1+3tanα
=
4+1
1-6
=-1.
點評:本題主要考查同角三角函數(shù)的基本關系、誘導公式的應用,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

在下列命題中,正確的是( 。
A、若|
a
|>|
b
|,則
a
b
B、若|
a
|=|
b
|
,則
a
=
b
C、若
a
=
b
,則
a
b
共線
D、若
a
b
,則
a
一定不與
b
共線

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

三個實數(shù)a,b,c依次成公差不為零的等差數(shù)列,且a,c,b成等比數(shù)列,則
a
b
的值是( 。
A、-2B、2C、4D、-4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=ln(x+1)-f(0)x-f′(0)x2+2.求f(x)的解析式及減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)=2sinωxcos(ωx+φ),(ω>0,-π<φ<π)的單増區(qū)間為[kπ-
π
12
,kπ+
12
],(k∈Z).
(1)求ω,φ的值;
(2)在△ABC中,若f(A)<
3
,求角A的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=2x+
2
x
+alnx,a∈R.若函數(shù)f(x)在[1,+∞)單調遞增,求實數(shù)a的取值范圍?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,四邊形ABCD是正方形,O是正方形的中心,PO⊥底面ABCD,E是PC的中點.
(1)求證:PA∥平面BDE;
(2)求證:平面PAC⊥平面BDE;
(3)若OP=10,AB=4,求BE與底面ABCD所成角的正切值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

等差數(shù)列{an}中,a1=1,
S4
a2
=5;
(1)求數(shù)列{an}的通項公式;
(2)設bn=
1
a
2
n+1
-1
,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,長方體ABCD-A1B1C1D1中,AB=AD=2,AA1=4,點E在CC1上,且C1E=3EC.
(Ⅰ)證明:A1C⊥平面BDE;
(Ⅱ)求直線A1D與平面BDE所成的角的余弦值.

查看答案和解析>>

同步練習冊答案