等差數(shù)列{an}中,a1=1,
S4
a2
=5;
(1)求數(shù)列{an}的通項公式;
(2)設bn=
1
a
2
n+1
-1
,求數(shù)列{bn}的前n項和Tn
考點:數(shù)列的求和,等差數(shù)列的性質
專題:等差數(shù)列與等比數(shù)列
分析:(1)利用等差數(shù)列的通項公式和前n項和公式由已知條件求出公差,由此能求出數(shù)列{an}的通項公式.
(2)利用裂項求和法求解.
解答: 解:(1)設等差數(shù)列{an}的公差為d,
則由
S4
a2
=5
得,
4a1+6d
a1+d
=5

解得d=1…(2分)
∴an=n…(4分)
(2)bn=
1
a
2
n+1
-1
=
1
n2+2n
=
1
n(n+2)
=
1
2
(
1
n
-
1
n+2
)
…(6分)
Tn=T1+T2+T3+…+Tn-1+Tn
=
1
2
(1-
1
3
+
1
2
-
1
4
+
1
3
-
1
5
+…+
1
n-1
-
1
n+1
+
1
n
-
1
n+2
)

=
1
2
(1+
1
2
-
1
n+1
-
1
n+2
)
…(11分)
Tn=
3n2+5n
4(n+1)(n+2)
…(12分)
點評:本題考查數(shù)列的通項公式和前n項和公式的求法,是中檔題,解題時要注意裂項求和法的合理運用.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

若數(shù)列{an}的各項按如下規(guī)律排列:
2
1
3
1
3
2
,
4
1
4
2
,
4
3
5
1
,
5
2
5
3
,
5
4
,…,
n+1
1
n+1
2
,…,
n+1
n
,…,則a2012=( 。
A、
64
59
B、
63
58
C、
64
58
D、
63
59

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知0<α<π,tanα=-2,化簡:
2cos(
π
2
+α)-cos(π-α)
sin(
π
2
-α)-3sin(π+α)
,并求值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在一次試驗中,測得(x,y)的五組值為(1,1.4),(2,2),(3,2.6),(4,3.2),(5,3.8),求y與x之間的回歸方程.附:
b
=
n
i-1
xiyi-n
.
xy
n
i-1
xi2-n
.
x
2
  
a
=
.
y
-
b
.
x

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知向量
a
=(cos
3
2
x,sin
3
2
x),
b
=(cos
x
2
,-sin
x
2
),且x∈[
π
2
,
3
2
π]
(Ⅰ)求|
a
+
b
|的取值范圍;
(Ⅱ)求函數(shù)f(x)=
a
b
-|
a
+
b
|的最小值,并求此時x的值;
(Ⅲ)若|k
a
+
b
|=
3
|
a
-k
b
|,其中k>0,求
a
b
的最小值,并求此時
a
b
的夾角的大小.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}的前項和Sn=n2,
(1)求數(shù)列{an}的通項;
(2)求數(shù)列{an+3 an}的前項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}的前n項和Sn=3+2n,
(1)求an
(2)設數(shù)列{bn}滿足bn=lgan,數(shù)列{bn}從第2項起,成等差數(shù)列還是等比數(shù)列?證明你的結論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=ax+b
1+x2
(x≥0),f(0)=1,f(
3
)=2-
3

(1)求函數(shù)f(x)的表達式及值域;
(2)若函數(shù)f(x)與g(x)的圖象關于直線y=x對稱,問是否存在實數(shù)m,使得命題p:f(m2-m)<f(3m-4)和q:g(
m-1
4
)>
3
4
滿足復合命題p且q為真命題?若存在,求出實數(shù)m的取值范圍;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=ex-1,g(x)=-x2-2x+2,若存在f(a)=g(b),求實數(shù)b的取值范圍.

查看答案和解析>>

同步練習冊答案