12.已知命題p:“若ac≥0,則二次方程ax2+bx+c=0沒(méi)有實(shí)根”,它的否命題為Q.
(Ⅰ)寫(xiě)出命題Q;
(Ⅱ)判斷命題Q的真假,并證明你的結(jié)論.

分析 (Ⅰ) 命題p的否命題為:若∴ac<0,則二次方程ax2+bx+c=0有實(shí)根.
(Ⅱ) 命題p的否命題是真命題.由△=b2-4ac>0二次方程ax2+bx+c=0有實(shí)根.

解答 解:(Ⅰ) 命題p的否命題為:“若∴ac<0,則二次方程ax2+bx+c=0有實(shí)根”.
(Ⅱ) 命題p的否命題是真命題.證明如下
∵ac<0⇒-ac>0⇒△=b2-4ac>0二次方程ax2+bx+c=0有實(shí)根.
∴該命題是真命題.

點(diǎn)評(píng) 本題考查了命題的否命題及其真假的判定,要與命題的否定區(qū)分開(kāi),屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.已知函數(shù)f(x)=ax3+bx2+cx+d(a<$\frac{2}{3}$b),在R上是單調(diào)遞增函數(shù),則$\frac{3a+2b+c}{2b-3a}$的最小值是( 。
A.3B.4C.5D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.(1)${(5\frac{1}{16})^{0.5}}-2×{(2\frac{10}{27})^{-\frac{2}{3}}}-2×{(\sqrt{2+π})^0}$÷${(\frac{3}{4})^{-2}}$;
(2)2lg5+$\frac{2}{3}$lg8+lg5•lg20+(lg2)2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.在△ABC中,內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,且tanC=$\frac{3}{4}$,c=-3bcosA.
(1)求tanB的值;
(2)若c=2,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.已知向量$\overrightarrow{a}$=(2,4,x),$\overrightarrow$=(2,y,2),若|$\overrightarrow{a}$|=6,則x=±4;若$\overrightarrow{a}$∥$\overrightarrow$,則x+y=6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.當(dāng)a∈{-1,$\frac{1}{2}$,2,3}時(shí),冪函數(shù)f(x)=xa的圖象不可能經(jīng)過(guò)(  )
A.第二、四象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.如圖,圓O是△ABC的外接圓,D是$\widehat{AC}$的中點(diǎn),BD交AC于E.
(Ⅰ)求證:DC2=DE•DB;
(Ⅱ)若CD=4$\sqrt{3}$,點(diǎn)O到AC的距離等于點(diǎn)D到AC的距離的一半,求圓O的半徑r.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.已知定義在R上的函數(shù)f(x)滿足:f(x)>0,f(x)•f(y)=f(x+y),且f(1)=$\frac{1}{2}$,當(dāng)x∈(0,+∞)時(shí)f(x)<1,關(guān)于x的不等式f(a)•f(-2-xex)-4>0(其中e為自然對(duì)數(shù)的底數(shù))恒成立,則實(shí)數(shù)a的取值范圍為(-∞,-$\frac{1}{e}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知函數(shù)f(x)=$\frac{ax+b}{{x}^{2}+1}$是定義在(-1,1)上的奇函數(shù),且f($\frac{1}{2}$)=$\frac{2}{5}$.
(1)求函數(shù)f(x)的解析式;
(2)判斷函數(shù)f(x)的單調(diào)性,并證明;
(3)解關(guān)于x的不等式f(2x-1)+f(x)<0.

查看答案和解析>>

同步練習(xí)冊(cè)答案