若實數(shù)x,y滿足不等式
x-2≤0
y-1≤0
x+2y-3≥0
,且目標函數(shù)z=x-2y的最大值為( 。
A、1B、2C、3D、4
考點:簡單線性規(guī)劃
專題:不等式的解法及應用
分析:作出不等式組對應的平面區(qū)域,利用目標函數(shù)的幾何意義,進行求解即可.
解答: 解:由z=x-2y得y=
1
2
x-
z
2
,
作出不等式組對應的平面區(qū)域如圖(陰影部分):平移直線y=
1
2
x-
z
2
,
由圖象可知當直線y=
1
2
x-
z
2
,過點C時,直線y=
1
2
x-
z
2
的截距最小,此時z最大,
x=2
x+2y-3=0
,解得
x=2
y=
1
2

代入目標函數(shù)z=x-2y,
得z=2-2×
1
2
=2-1=1
∴目標函數(shù)z=x-2y的最大值是1.
故選:A
點評:本題主要考查線性規(guī)劃的基本應用,利用目標函數(shù)的幾何意義是解決問題的關鍵,利用數(shù)形結合是解決問題的基本方法.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}前n項和Sn=n2+n
(1)求數(shù)列{an}的通項公式;
(2)令bn=
1
anan+1
,求證:數(shù)列{bn}的前n項和Tn
1
4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若直線經過(1,2)和(-1,2)兩點,則該直線的方程為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如果某日在亞丁灣擔任護航任務的我海軍“馬鞍山”艦向西以4
3
海里/小時的速度朝燈塔Q方向,當行駛至距離燈塔3
3
三海里的A處,通過衛(wèi)星導航系統(tǒng)發(fā)現(xiàn)有一可疑小艇位于燈塔的北偏東60°的方向,距燈塔1海里B處,正以4海里/小時的速度朝北偏東60°方向行駛.
(1)t小時后,小艇與“馬鞍山”艦相距多少海里?
(2)什么時候兩船距離最近?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖的程序框圖可用來估計π的值(假設函數(shù)CONRND(-1,1)是產生隨機數(shù)的函數(shù),它能隨機產生區(qū)間(-1,1)內的任何一個實數(shù)).如果輸入1000,輸出的結果為788,則由此可估計π的近似值為( 。
A、3.141
B、3.142
C、3.151
D、3.152

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)=-
1
3
x3+
1
2
ax2+2x在區(qū)間[-1,1]上是增函數(shù).
(1)求實數(shù)a的范圍A;
(2)設關于x的方程f(x)=
5
3
x有兩個非零實根x1、x2,試問:是否存在實數(shù)m,使得不等式m2+tm+
1
2
≥|x1-x2|對任意a∈A及t∈[-1,1]恒成立?若存在,求m的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設一直角三角形的兩條直角邊長均是區(qū)間(0,π)上的任意實數(shù),則斜邊長小于
π
的概率為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列說法正確的個數(shù)是( 。
①命題“?x∈R,x3-x2+1≤0”的否定是“?x0∈R,x03-x02+1>0”;
②“b=
ac
”是“三個數(shù)a,b,c成等比數(shù)列”的充要條件;
⑨“m=-1”是“直線mx+(2m-1)y+1=0和直線3x+my+2=0垂直”的充要條件:
④“復數(shù)Z=a+bi(a,b∈R)是純虛數(shù)的充要條件是a=0”是真命題.
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=|x-k|+|x-2k|(k>0),若當3≤x≤4時,f(x)能取到最小值,則實數(shù)k的取值范圍是
 

查看答案和解析>>

同步練習冊答案