【題目】從高三抽出名學生參加數(shù)學競賽,由成績得到如下的頻率分布直方圖.試利用頻率分布直方圖求:
(1)這名學生成績的眾數(shù)與中位數(shù);
(2)這名學生的平均成績.
【答案】(1)眾數(shù)是75,中位數(shù)約為76.7;(2)平均成績約為74.
【解析】
試題(1)由眾數(shù)的概念可知,眾數(shù)是出現(xiàn)次數(shù)最多的數(shù).在直方圖中高度最高的小長方形框的中間值的橫坐標即為所求;由于中位數(shù)是所有數(shù)據(jù)中的中間值,故在頻率分布直方圖中體現(xiàn)的是中位數(shù)的左右兩邊頻數(shù)應相等,即頻率也相等,從而就是小矩形的面積和相等.因此在頻率分布直方圖中將頻率分布直方圖中所有小矩形的面積一分為二的直線所對應的成績即為所求.(2)樣本平均值應是頻率分布直方圖的“重心”,即所有數(shù)據(jù)的平均值,取每個小矩形底邊的中點值乘以每個小矩形的面積即可.
試題解析:(1)由眾數(shù)的概念可知,眾數(shù)是出現(xiàn)次數(shù)最多的數(shù).在直方圖中高度最高的小長方形框的中間值的橫坐標即為所求,所以眾數(shù)應為.
由于中位數(shù)是所有數(shù)據(jù)中的中間值,故在頻率分布直方圖中體現(xiàn)的是中位數(shù)的左右兩邊頻數(shù)應相等,即頻率也相等,從而就是小矩形的面積和相等.因此在頻率分布直方圖中將頻率分布直方圖中所有小矩形的面積一分為二的直線所對應的成績即為所求.
∵.
∴前三個小矩形面積的和為,而第四個小矩形面積為,
∴中位數(shù)應位于第四個小矩形內(nèi).
設其底邊為,高為,∴令得,故中位數(shù)約為.
(2)樣本平均值應是頻率粉綠分布直方圖的“重心”,即所有數(shù)據(jù)的平均值,取每個小矩形底邊的中點值乘以每個小矩形的面積即可,
∴平均成績?yōu)?/span>
科目:高中數(shù)學 來源: 題型:
【題目】隨著網(wǎng)絡營銷和電子商務的興起,人們的購物方式更具多樣化,某調(diào)查機構隨機抽取10名購物者進行采訪,5名男性購物者中有3名傾向于選擇網(wǎng)購,2名傾向于選擇實體店,5名女性購物者中有2名傾向于選擇網(wǎng)購,3名傾向于選擇實體店.
(1)若從10名購物者中隨機抽取2名,其中男、女各一名,求至少1名傾向于選擇實體店的概率;
(2)若從這10名購物者中隨機抽取3名,設X表示抽到傾向于選擇網(wǎng)購的男性購物者的人數(shù),求X的分布列和數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=lnx+1.
(Ⅰ)證明:當x>0時,f(x)≤x;
(Ⅱ)設 ,若g(x)≥0對x>0恒成立,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設點為坐標原點,橢圓:的右頂點為,上頂點為,過點且斜率為的直線與直線相交于點,且.
(1)求橢圓的離心率;
(2)是圓:的一條直徑,若橢圓經(jīng)過,兩點,求橢圓的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】現(xiàn)從某高中隨機抽取部分高二學生,調(diào)査其到校所需的時間(單位:分鐘),并將所得數(shù)據(jù)繪制成頻率分布直方圖(如圖),其中到校所需時間的范圍是,樣本數(shù)據(jù)分組為.
(1)求直方圖中的值;
(2)如果學生到校所需時間不少于1小時,則可申請在學校住宿.若該校錄取1200名新生,請估計高二新生中有多少人可以申請住宿;
(3)以直方圖中的頻率作為概率,現(xiàn)從該學校的高二新生中任選4名學生,用表示所選4名學生中“到校所需時間少于40分鐘”的人數(shù),求的分布列和數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某精密儀器生產(chǎn)有兩道相互獨立的先后工序,每道工序都要經(jīng)過相互獨立的工序檢查,且當?shù)谝坏拦ば驒z查合格后才能進入第二道工序,兩道工序都合格,產(chǎn)品才完全合格,.經(jīng)長期監(jiān)測發(fā)現(xiàn),該儀器第一道工序檢查合格的概率為 ,第二道工序檢查合格的概率為 ,已知該廠三個生產(chǎn)小組分別每月負責生產(chǎn)一臺這種儀器.
(1)求本月恰有兩臺儀器完全合格的概率;
(2)若生產(chǎn)一臺儀器合格可盈利5萬元,不合格則要虧損1萬元,記該廠每月的贏利額為ξ,求ξ的分布列和每月的盈利期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=alnx+x2+bx(a為實常數(shù)).
(1)若a=﹣2,b=﹣3,求f(x)的單調(diào)區(qū)間;
(2)若b=0,且a>﹣2e2 , 求函數(shù)f(x)在[1,e]上的最小值及相應的x值;
(3)設b=0,若存在x∈[1,e],使得f(x)≤(a+2)x成立,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某中學從高三男生中隨機抽取n名學生的身高,將數(shù)據(jù)整理,得到的頻率分布表如表所示:
組號 | 分組 | 頻數(shù) | 頻率 |
第1組 | 5 | 0.05 | |
第2組 | a | 0.35 | |
第3組 | 30 | b | |
第4組 | 20 | 0.20 | |
第5組 | 10 | 0.10 | |
合計 | n | 1.00 |
(1)求出頻率分布表中的值,并完成下列頻率分布直方圖;
(2)為了能對學生的體能做進一步了解,該校決定在第1,4,5組中用分層抽樣取7名學生進行不同項目的體能測試,若在這7名學生中隨機抽取2名學生進行引體向上測試,求第4組中至少有一名學生被抽中的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知圓經(jīng)過點,且圓心在直線:上.
(1)求圓的方程;
(2)過點的直線與圓交于兩點,問在直線上是否存在定點,使得恒成立?若存在,請求出點的坐標;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com