寫(xiě)出命題“x>1”的一個(gè)必要條件是
 
考點(diǎn):必要條件、充分條件與充要條件的判斷
專題:簡(jiǎn)易邏輯
分析:根據(jù)必要條件的判定方法,集合{x|x>1}應(yīng)是要求集合的真子集,問(wèn)題得以解決
解答: 解:必要條件的判定方法,集合{x|x>1}應(yīng)是要求集合的真子集,
∴x>0是x>1的必要條件.
故答案為:x>0
點(diǎn)評(píng):本題考查數(shù)集之間的必要條件判定.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=x+aex,其中a為實(shí)常數(shù).
(1)當(dāng)a=-1時(shí),求函數(shù)f(x)的單調(diào)區(qū)間;
(2)討論f(x)在定義域R上的極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
a
=(sinx,
3
2
),
b
=(cosx,-1)
(1)當(dāng)
a
b
時(shí),求tanx的值
(2)求f(x)=(
a
+
b
b
在[-
π
2
,0
]上的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列結(jié)論正確的是(  )
A、任何集合都有子集
B、任何集合都有真子集
C、{∅}=∅
D、{0}=∅

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列敘述:
①函數(shù)y=
1
x
在(-∞,0)∪(0,+∞)上是減函數(shù);
②已知集合P={a,b},Q={-1,0.1},則映射f:P→Q中滿足f(b)=0的映射共有3個(gè);
③對(duì)于函數(shù)f(x)=-x2+1,當(dāng)x1≠x2時(shí),都有
f(x1)+f(x2)
2
<f(
x1+x2
2
)
;
④若函數(shù)f(x)=
(2-m)x+
1
2
(x<1)
mx(x≥1)
在R上是增函數(shù),則m的取值范圍是1<m<2;
其中正確的所有番號(hào)是:
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

記實(shí)數(shù)x1,x2,…xn中的最小數(shù)為min{x1,x2,…xn},設(shè)函數(shù)f(x)=min{1+sinωx,1-sinωx}(ω>0),若f(x)的最小正周期為1,則ω的值為(  )
A、
1
2
B、1
C、
π
2
D、π

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)f(x)=x2-2ax在區(qū)間[1,2]上是增函數(shù),則f(2)的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=loga
x-2
x+2
)的定義域?yàn)閇m,n],值域?yàn)閇Loga(n+1),loga(m+1)]求a取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知直線l在兩坐標(biāo)軸上截距都為a(a≠0),l過(guò)點(diǎn)A(2,3).
(1)求l的方程(結(jié)果化為一般式);
(2)若l與x軸、y軸分別交于A、B兩點(diǎn),求△AOB外接圓的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案