已知復(fù)數(shù)z滿足(1+i)z=3+i(i為虛數(shù)單位),則復(fù)數(shù)z在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)位于(  )

A.第一象限 B.第二象限 C.第三象限 D.第四象限

 

D

【解析】解法一:由(1+i)z=3+i可得z==2-i,所以復(fù)數(shù)z在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)的坐標(biāo)為(2,-1),顯然該點(diǎn)在第四象限,故選D.

解法二:設(shè)z=a+bi(a,b∈R),代入方程得(1+i)(a+bi) =3+i,即(a-b)+(a+b)i=3+i,根據(jù)復(fù)數(shù)相等的充要條件可得,,解得,故復(fù)數(shù)z在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)的坐標(biāo)為(2,-1),顯然該點(diǎn)在第四象限,故選D.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):5-4數(shù)列求和(解析版) 題型:解答題

已知數(shù)列{an}中,a1=2,an-an-1-2n=0(n≥2,n∈N*).

(1)寫出a2,a3的值(只寫結(jié)果),并求出數(shù)列{an}的通項(xiàng)公式;

(2)設(shè)bn=+…+,若對(duì)任意的正整數(shù)n,當(dāng)m∈[-1,1]時(shí),不等式t2-2mt+>bn恒成立,求實(shí)數(shù)t的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):5-2等差數(shù)列及其前n項(xiàng)和(解析版) 題型:選擇題

在等差數(shù)列{an}中,已知a4=7,a3+a6=16,an=31,則n為(  )

A.13 B.14 C.15 D.16

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):4-4數(shù)系的擴(kuò)充與復(fù)數(shù)的引入(解析版) 題型:解答題

設(shè)復(fù)數(shù)z=-3cosθ+2isinθ.

(1)當(dāng)θ=時(shí),求|z|的值;

(2)若復(fù)數(shù)z所對(duì)應(yīng)的點(diǎn)在直線x+3y=0上,求的值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):4-4數(shù)系的擴(kuò)充與復(fù)數(shù)的引入(解析版) 題型:填空題

已知復(fù)數(shù)z滿足(1+i)z=1+i(i是虛數(shù)單位),則|z|=________.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):4-3平面向量的數(shù)量積及應(yīng)用(解析版) 題型:選擇題

已知向量a,b的模都是2,其夾角為60°,又知=3a+2b,=a+3b,則P,Q兩點(diǎn)間的距離為(  )

A.2 B. C.2 D.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):4-3平面向量的數(shù)量積及應(yīng)用(解析版) 題型:填空題

已知|a|=|b|=2,(a+2b)·(a-b)=-2,則a與b的夾角為_(kāi)_______.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):4-2平面向量的基本定理及坐標(biāo)表示(解析版) 題型:選擇題

已知向量a=(2,1),b=(1,k),且a與b的夾角為銳角,則實(shí)數(shù)k的取值范圍是(  )

A.(-2,+∞) B.(-2,)∪(,+∞)

C.(-∞,-2) D.(-2,2)

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):3-7正弦定理和余弦定理(解析版) 題型:解答題

在△ABC中,a,b,c分別是三內(nèi)角A,B,C所對(duì)的三邊,已知b2+c2=a2+bc.

(1)求角A的大;

(2)若2sin2+2sin2=1,試判斷△ABC的形狀.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案