已知數(shù)列{an}中,a1=2,an-an-1-2n=0(n≥2,n∈N*).
(1)寫出a2,a3的值(只寫結(jié)果),并求出數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=+++…+,若對(duì)任意的正整數(shù)n,當(dāng)m∈[-1,1]時(shí),不等式t2-2mt+>bn恒成立,求實(shí)數(shù)t的取值范圍.
(1)a2=6,a3=12. an=n(n+1).
(2)實(shí)數(shù)t的取值范圍為(-∞,-2)∪(2,+∞)
【解析】【解析】
(1)∵a1=2,an-an-1-2n=0(n≥2,n∈N*),
∴a2=6,a3=12.
當(dāng)n≥3時(shí),an-an-1=2n,an-1-an-2=2(n-1),
又a3-a2=2×3,a2-a1=2×2,
∴an-a1=2[n+(n-1)+…+3+2],
∴an=2[n+(n-1)+…+3+2+1]=2×=n(n+1).
當(dāng)n=1時(shí),a1=2;當(dāng)n=2時(shí),a2=6,也滿足上式,
∴數(shù)列{an}的通項(xiàng)公式為an=n(n+1).
(2)bn=++…+
=++…+
=-+-+…+-
=-
=
=.
令f(x)=2x+ (x≥1),則f′(x)=2-,
當(dāng)x≥1時(shí),f′(x)>0恒成立,
∴函數(shù)f(x)在[1,+∞)上是增函數(shù),
故當(dāng)x=1時(shí),f(x)min=f(1)=3,
即當(dāng)n=1時(shí),(bn)max=.
要使對(duì)任意的正整數(shù)n,當(dāng)m∈[-1,1]時(shí),不等式t2-2mt+>bn恒成立,則需t2-2mt+>(bn)max=,
即t2-2mt>0對(duì)?m∈[-1,1]恒成立,
∴,解得t>2或t<-2,
∴實(shí)數(shù)t的取值范圍為(-∞,-2)∪(2,+∞).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):6-5合情推理與演繹推理(解析版) 題型:選擇題
已知“整數(shù)對(duì)”按如下規(guī)律排成一列:(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4),(2,3),(3,2),(4,1),…,則第60個(gè)“整數(shù)對(duì)”是( )
A.(7,5) B.(5,7) C.(2,10) D.(10,1)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):6-2一元二次不等式及其解法(解析版) 題型:選擇題
不等式x2+ax+4<0的解集不是空集,則實(shí)數(shù)a的取值范圍是( )
A.[-4,4] B.(-4,4)
C.(-∞,-4]∪[4,+∞) D.(-∞,-4)∪(4,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):5-5數(shù)列的綜合應(yīng)用(解析版) 題型:解答題
某企業(yè)為加大對(duì)新產(chǎn)品的推銷力度,決定從今年起每年投入100萬元進(jìn)行廣告宣傳,以增加新產(chǎn)品的銷售收入.已知今年的銷售收入為250萬元,經(jīng)市場調(diào)查,預(yù)測(cè)第n年與第n-1年銷售收入an與an-1(單位:萬元)滿足關(guān)系式:an=an-1+-100.
(1)設(shè)今年為第1年,求第n年的銷售收入an;
(2)依上述預(yù)測(cè),該企業(yè)前幾年的銷售收入總和Sn最大.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):5-5數(shù)列的綜合應(yīng)用(解析版) 題型:選擇題
數(shù)列{an}是公差不為0的等差數(shù)列,a1=1且a1、a3、a6成等比數(shù)列,則{an}的前n項(xiàng)和Sn等于( )
A.+ B.+
C.+ D.n2+n
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):5-4數(shù)列求和(解析版) 題型:解答題
已知各項(xiàng)均不相等的等差數(shù)列{an}的前n項(xiàng)和為Sn,若S3=15,且a3+1為a1+1和a7+1的等比中項(xiàng).
(1)求數(shù)列{an}的通項(xiàng)公式與前n項(xiàng)和Sn;
(2)設(shè)Tn為數(shù)列{}的前n項(xiàng)和,問是否存在常數(shù)m,使Tn=m[+],若存在,求m的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):5-4數(shù)列求和(解析版) 題型:選擇題
數(shù)列1,1+2,1+2+4,…,1+2+22+…+2n-1,…的前n項(xiàng)和Sn>1020,那么n的最小值是( )
A.7 B.8 C.9 D.10
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):5-2等差數(shù)列及其前n項(xiàng)和(解析版) 題型:填空題
已知數(shù)列{an}中a1=1,a2=2,當(dāng)整數(shù)n>1時(shí),Sn+1+Sn-1=2(Sn+S1)都成立,則S15=________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):4-4數(shù)系的擴(kuò)充與復(fù)數(shù)的引入(解析版) 題型:選擇題
已知復(fù)數(shù)z滿足(1+i)z=3+i(i為虛數(shù)單位),則復(fù)數(shù)z在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)位于( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com