直線2ρsinθ=1與圓ρ=2cosθ相交弦的長(zhǎng)度為_(kāi)_______.


分析:先將原極坐標(biāo)方程ρ=2cosθ兩邊同乘以ρ后化成直角坐標(biāo)方程,再將2ρsinθ=1也化成極坐標(biāo)方程,后利用直角坐標(biāo)方程進(jìn)行求解即可.
解答:將圓ρ=2cosθ化為直角坐標(biāo)方程為(x-1)2+y2=1,
直線2ρsinθ=1化為直角坐標(biāo)方程為y=,
代入(x-1)2+y2=1,得x=1±
則直線2ρsinθ=1與圓ρ=2cosθ相交弦的長(zhǎng)度為1+-(1-)=
故答案為:
點(diǎn)評(píng):本題考查點(diǎn)的極坐標(biāo)和直角坐標(biāo)的互化,利用直角坐標(biāo)與極坐標(biāo)間的關(guān)系,即利用ρcosθ=x,ρsinθ=y,ρ2=x2+y2,進(jìn)行代換即得.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系xOy中,曲線C的參數(shù)方程:
x=1+
2
cosφ
y=1-
2
sinφ
,在以O(shè)為極點(diǎn),x軸的非半軸為極軸的極坐標(biāo)系中,直線l的極坐標(biāo)方程:2ρcosθ+2ρsinθ-1=0.
(1)求曲線C,l的普通方程;
(2)設(shè)曲線C上的點(diǎn)到l的距離為d,求d的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•石景山區(qū)一模)直線2ρsinθ=1與圓ρ=2cosθ相交弦的長(zhǎng)度為
3
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:石景山區(qū)一模 題型:填空題

直線2ρsinθ=1與圓ρ=2cosθ相交弦的長(zhǎng)度為_(kāi)_____.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013年北京市石景山區(qū)高考數(shù)學(xué)一模試卷(理科)(解析版) 題型:填空題

直線2ρsinθ=1與圓ρ=2cosθ相交弦的長(zhǎng)度為   

查看答案和解析>>

同步練習(xí)冊(cè)答案