分析 由題知,當(dāng)n≥2 時(shí),有Sn+1=an+2-an+1,Sn-1+1=an+1-an,兩式相減得an+2=2an+1,利用等比數(shù)列的通項(xiàng)公式與求和公式可得an,Sn,再利用數(shù)列的單調(diào)性即可得出.
解答 解:由題知,當(dāng)n≥2 時(shí),有Sn+1=an+2-an+1,Sn-1+1=an+1-an,
兩式相減得an+2=2an+1,
又a1=1,a2=2,$\therefore$ a3=4,故an+1=2an 對(duì)任意n∈N* 成立,
∴${a_n}={2^{n-1}}$,${S_n}={2^n}-1$,
∴$λ>\frac{a_n}{S_n}=\frac{1}{{2-\frac{1}{{{2^{n-1}}}}}}$恒成立只需$λ>\frac{1}{{2-\frac{1}{{{2^{n-1}}}}}}$的最大值,
當(dāng)n=1時(shí),右式取得最大值1,∴λ>1.
故答案為:λ>1.
點(diǎn)評(píng) 本題考查了數(shù)列遞推關(guān)系、等比數(shù)列的定義通項(xiàng)公式與求和公式、數(shù)列的單調(diào)性、不等式的解法,考查了推理能力與計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 充分不必要 | B. | 必要不充分 | ||
C. | 充要 | D. | 既不充分也不必要 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 4π | B. | $\frac{200}{π}$ | C. | 2π | D. | $\frac{100}{π}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | ②④ | B. | ②③ | C. | ①④ | D. | ①③ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com