9.函數(shù)y=sinx-$\frac{1}{x}$的圖象大致是( 。
A.B.C.D.

分析 判斷函數(shù)的奇偶性,通過函數(shù)的導數(shù),判斷函數(shù)的單調性,利用特殊函數(shù)值判斷圖象即可.

解答 解:函數(shù)y=sinx-$\frac{1}{x}$是奇函數(shù),排除D,
函數(shù)y′=cosx+$\frac{1}{{x}^{2}}$,x∈(0,$\frac{π}{2}$)時,y′>0,函數(shù)是增函數(shù),排除A,
并且x=$\frac{π}{2}$時,y=1-$\frac{2}{π}$>0,排除C,
故選:B.

點評 本題考查函數(shù)的圖形的判斷,函數(shù)的奇偶性以及函數(shù)的單調性以及特殊角的函數(shù)值的判斷,考查計算能力.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

19.若α為第一象限角,且cosα=$\frac{2}{3}$,則tanα=$\frac{\sqrt{5}}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.已知集合A={x|m-1≤x≤2m+3},函數(shù)f(x)=lg(-x2+2x+8)的定義域為B.
(1)當m=2時,求A∪B、(∁RA)∩B;
(2)若A∩B=A,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.已知函數(shù)f(x)=$\left\{\begin{array}{l}-2{x^2}-4x+1,\;\;x≤0\\ x+1,\;\;\;\;\;\;\;\;\;\;\;\;\;\;x>0.\end{array}\right.$
(1)計算f(f(${log_2}\frac{1}{4}$))的值;
(2)討論函數(shù)f(x)的單調性,并寫出f(x)的單調區(qū)間;
(3)設函數(shù)g(x)=f(x)+c,若函數(shù)g(x)有三個零點,求實數(shù)c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.已知集合A={1,2,3,4},B={x|y=2x,y∈A},則A∩B=( 。
A.{2}B.{1,2}C.{2,4}D.{1,2,4}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.已知數(shù)列{an}的前n項和為Sn,且滿足:a1=1,a2=2,Sn+1=an+2-an+1(n∈N*),若不等式λSn>an恒成立,則實數(shù)λ的取值范圍是λ>1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.設F1,F(xiàn)2分別是雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$(a>0,b>0)的左、右焦點,若雙曲線右支上存在一點P,使得$(\overrightarrow{OP}+\overrightarrow{O{F_2}})•\overrightarrow{{F_2}P}=0$,其中O為坐標原點,且$|\overrightarrow{P{F_1}}|=3|\overrightarrow{P{F_2}}|$,則該雙曲線的離心率為( 。
A.$\sqrt{5}$B.$\sqrt{10}$C.$\frac{{\sqrt{10}}}{2}$D.$\frac{5}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.將某班的60名學生編號為01,02,…,60,采用系統(tǒng)抽樣方法抽取一個容量為5的樣本,且隨機抽得的一個號碼為03,則剩下的四個號碼依次是15,27,39,51.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.如圖是某幾何體的三視圖且a=b,則該幾何體主視圖的面積為( 。
A.$\sqrt{6}$B.$\frac{3}{2}$C.$\frac{{\sqrt{3}}}{2}$D.$\frac{{\sqrt{15}}}{2}$

查看答案和解析>>

同步練習冊答案