已知點(diǎn)A(1,0),點(diǎn)R到直線l:y=2x-6上的一點(diǎn),若,則點(diǎn)P軌跡方程為   
【答案】分析:先設(shè)R=(X,Y),P=(X,Y),根據(jù)條件,得出動(dòng)點(diǎn)坐標(biāo)之間的關(guān)系,利用點(diǎn)R在直線l:y=2x-6上,代入化簡(jiǎn)即可.
解答:解:設(shè)R=(X,Y),P=(X,Y)所以向量
又因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024183045490946368/SYS201310241830454909463012_DA/2.png">,得1-X=2X-2,-YO=2Y 得XO=3-2X,YO=-2Y,把X,YO代入直線化簡(jiǎn)得y=2x
即所求點(diǎn)P軌跡方程為 y=2x
故答案為:y=2x
點(diǎn)評(píng):本題的考點(diǎn)是軌跡方程,主要考查代入法求軌跡方程,考查向量與解析幾何的結(jié)合,關(guān)鍵是尋找動(dòng)點(diǎn)坐標(biāo)之間的關(guān)系,巧妙地運(yùn)用已知點(diǎn)的軌跡方程.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,已知點(diǎn)A(-1,0)與點(diǎn)B(1,0),C是圓x2+y2=1上的動(dòng)點(diǎn),連接BC并延長(zhǎng)至D,使得|CD|=|BC|,求AC與OD的交點(diǎn)P的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)A(-1,0),B(0,2),點(diǎn)P是圓(x-1)2+y2=1上任意一點(diǎn),則△PAB面積的最大值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)A(1,0),B(0,1)和互不相同的點(diǎn)P1,P2,P3,…,Pn,…,滿足
OPn
=an
OA
+bn
OB
(n∈N*)
,O為坐標(biāo)原點(diǎn),其中an、bn分別為等差數(shù)列和等比數(shù)列,若P1是線段AB的中點(diǎn),設(shè)等差數(shù)列公差為d,等比數(shù)列公比為q,當(dāng)d與q滿足條件
 
時(shí),點(diǎn)P1,P2,P3,…,Pn,…共線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)A(-1,0),B(1,0),M是平面上的一動(dòng)點(diǎn),過(guò)M作直線l:x=4的垂線,垂足為N,且|MN|=2|MB|.
(1)求M點(diǎn)的軌跡C的方程;
(2)當(dāng)M點(diǎn)在C上移動(dòng)時(shí),|MN|能否成為|MA|與|MB|的等比中項(xiàng)?若能求出M點(diǎn)的坐標(biāo),若不能說(shuō)明理.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

點(diǎn)A到圖形C上每一個(gè)點(diǎn)的距離的最小值稱為點(diǎn)A到圖形C的距離.已知點(diǎn)A(1,0),圓C:x2+2x+y2=0,那么平面內(nèi)到圓C的距離與到點(diǎn)A的距離之差為1的點(diǎn)的軌跡是( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案