11.下列函數(shù)中既是奇函數(shù),又是區(qū)間(-1,0)上是減函數(shù)的( 。
A.y=sinxB.y=-|x-1|C.y=ex-e-xD.y=ln$\frac{1-x}{1+x}$

分析 根據(jù)函數(shù)奇偶性和單調(diào)性的定義和性質(zhì)分別進行判斷即可.

解答 解:A.y=sinx是奇函數(shù),在區(qū)間(-1,0)上是增函數(shù),不滿足條件.
B.y=-|x-1|為非奇非偶函數(shù),不滿足條件.
C.f(-x)=e-x-ex=-(ex-e-x)=-f(x),則函數(shù)是奇函數(shù),且函數(shù)在定義域上為增函數(shù),不滿足條件.
D.f(-x)=ln$\frac{1+x}{1-x}$=ln($\frac{1-x}{1+x}$)-1=-ln$\frac{1-x}{1+x}$=-f(x),函數(shù)f(x)為奇函數(shù),
且y=ln$\frac{1-x}{1+x}$=ln$\frac{-(x+1)+2}{1+x}$=ln(-1+$\frac{2}{1+x}$)在區(qū)間(-1,0)上是減函數(shù),滿足條件.
故選:D

點評 本題主要考查函數(shù)奇偶性和單調(diào)性的判斷,要求熟練掌握掌握常見函數(shù)的奇偶性和單調(diào)性的性質(zhì).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.函數(shù)f(x)=-4x3+6x2+1在[0,3]上的最大值為(  )
A.1B.3C.4D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.$\frac{sin20°cos20°}{cos50°}$=( 。
A.2B.$\frac{1}{2}$C.$\sqrt{2}$D.$\frac{\sqrt{2}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知sinα+cosα=$\frac{1-\sqrt{3}}{2}$(0<α<π),則cos2α的值為$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.PA,PB是平面α的斜線,∠APB=90°,AB=10,P到平面α的距離為3,PA與平面α所成角為30°,求PB與平面α所成角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知數(shù)列{an}是各項均為正數(shù)的等比數(shù)列,且a1a2…a18=218
(1)若a5+a14=5,求數(shù)列{an}的公比q;
(2)若公比q=2,求a3a6a9…a18的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)f(x)=$\frac{2x}{{x}^{2}+a}$(a>0)在x=-1處的切線垂直于y軸.
(1)求實數(shù)a的值;
(2)求過點M(1,f(1))且與曲線y=f(x)相切的切點P的坐標.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知兩個非零平面向量$\overrightarrow{a}$,$\overrightarrow$滿足:對任意λ∈R恒有|$\overrightarrow{a}$-$λ\overrightarrow$|≥|$\overrightarrow{a}$-$\frac{1}{2}\overrightarrow$|,則:
①若|$\overrightarrow$|=8,則$\overrightarrow{a}•\overrightarrow$=32;
②若$\overrightarrow{a}$,$\overrightarrow$的夾角為$\frac{π}{6}$,則$\frac{|2\overrightarrow{a}+t•\overrightarrow|}{|\overrightarrow|}$的最小值為$\frac{\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知sin(θ-$\frac{3}{2}π$)+cos($\frac{3}{2}π+θ$)=$\frac{3}{5}$,求sin3($\frac{π}{2}$+θ)-cos3($\frac{3π}{2}$-θ)的值.

查看答案和解析>>

同步練習(xí)冊答案