設(shè)是同時(shí)符合以下性質(zhì)的函數(shù)組成的集合:
①,都有;②在上是減函數(shù).
(1)判斷函數(shù)和()是否屬于集合,并簡(jiǎn)要說明理由;
(2)把(1)中你認(rèn)為是集合中的一個(gè)函數(shù)記為,若不等式對(duì)任意的總成立,求實(shí)數(shù)的取值范圍.
(1),;(2).
解析試題分析:(1)對(duì)和分別判斷其單調(diào)性,然后再求出其值域即可得到答案;(2)對(duì)任意的總成立,則可得,問題轉(zhuǎn)化為求函數(shù)的最大值,通過判斷其單調(diào)性即可得到最大值.
試題解析:(1)∵在時(shí)是減函數(shù),的值域?yàn)?img src="http://thumb.1010pic.com/pic5/tikupic/6d/0/msp0j.png" style="vertical-align:middle;" />,
∴不在集合中 3分
又∵時(shí),,,∴, 5分
且在上是減函數(shù),
∴在集合中 7分
(2),
, 9分
在上是減函數(shù),, 11分
又由已知對(duì)任意的總成立,
∴,因此所求的實(shí)數(shù)的取值范圍是 16分
考點(diǎn):函數(shù)的單調(diào)性、值域,不等式恒成立問題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
揚(yáng)州某地區(qū)要建造一條防洪堤,其橫斷面為等腰梯形,腰與底邊成角為(如圖),考慮到防洪堤堅(jiān)固性及石塊用料等因素,設(shè)計(jì)其橫斷面要求面積為平方米,且高度不低于米.記防洪堤橫斷面的腰長(zhǎng)為(米),外周長(zhǎng)(梯形的上底線段與兩腰長(zhǎng)的和)為(米).
⑴求關(guān)于的函數(shù)關(guān)系式,并指出其定義域;
⑵要使防洪堤橫斷面的外周長(zhǎng)不超過米,則其腰長(zhǎng)應(yīng)在什么范圍內(nèi)?
⑶當(dāng)防洪堤的腰長(zhǎng)為多少米時(shí),堤的上面與兩側(cè)面的水泥用料最。磾嗝娴耐庵荛L(zhǎng)最小)?求此時(shí)外周長(zhǎng)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
若的定義域?yàn)?,值域?yàn)?img src="http://thumb.1010pic.com/pic5/tikupic/ec/a/h1jh9.png" style="vertical-align:middle;" />,則稱函數(shù)是上的“四維方軍”函數(shù).
(1)設(shè)是上的“四維方軍”函數(shù),求常數(shù)的值;
(2)問是否存在常數(shù)使函數(shù)是區(qū)間上的“四維方軍”函數(shù)?若存在,求出的值,否則,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù)是定義域?yàn)?img src="http://thumb.1010pic.com/pic5/tikupic/dd/0/1yijr2.png" style="vertical-align:middle;" />的奇函數(shù).
(Ⅰ)求的值;
(Ⅱ)若,且在上的最小值為,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)二次函數(shù)在區(qū)間上的最大值、最小值分別是,集合.
(Ⅰ)若,且,求的值;
(Ⅱ)若,且,記,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
(I)若不等式的解集為,求實(shí)數(shù)的值;
(II)在(I)的條件下,若對(duì)一切實(shí)數(shù)恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
定義域?yàn)?img src="http://thumb.1010pic.com/pic5/tikupic/07/6/cmsra.png" style="vertical-align:middle;" />的奇函數(shù)滿足,且當(dāng)時(shí), .
(Ⅰ)求在上的解析式;
(Ⅱ)當(dāng)取何值時(shí),方程在上有解?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù).
(1) 試判斷函數(shù)在上單調(diào)性并證明你的結(jié)論;
(2) 若恒成立, 求整數(shù)的最大值;
(3) 求證:.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com