函數(shù)f(x)=
.
4sinx5
1cos(
π
6
-x)
.
的最大值是
 
分析:由已知中函數(shù) f(x)=
.
4sinx5
1cos(
π
6
-x)
.
利用二階行列式的對角線法則,我們結(jié)合和角公式和倍角公式,我們易求出函數(shù)的解析式,進(jìn)而求出其最大值.
解答:解:∵函數(shù) f(x)=
.
4sinx5
1cos(
π
6
-x)
.
=4sinx•cos(
π
6
-x)-5

=2
3
sinx•cosx+2sinx•sinx-5
=2sin(2x-
π
6
)-4
故最大值是:-2,
故答案為:-2.
點評:本題考查的知識點是三角函數(shù)的最值及其求法,其中利用二階行列式的對角線法則,我們結(jié)合誘導(dǎo)公式和倍角公式,求出函數(shù)的解析式,是解答本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

定義在R上的函數(shù)y=f(x)是增函數(shù),且函數(shù)y=f(x-2)的圖象關(guān)于(2,0)成中心對稱,設(shè)s,t滿足不等式f(s2-4s)≥-f(4t-t2),若-2≤s≤2時,則3t+s的范圍是
[-8,16]
[-8,16]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義在R上的函數(shù)y=f(x)是增函數(shù),且函數(shù)y=f(x-2)的圖象關(guān)于(2,0)成中心對稱,若s,t滿足不等式f(s2-4s)≥-f(4t-t2),若-2≤s≤2時,則3t+s的最大值為
16
16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2009年高考數(shù)學(xué)文科(寧夏卷) 題型:044

已知函數(shù)f(x)x33ax29a2xa3

(1)設(shè)a1,求函數(shù)f(x)的極值;

(2)a,且當(dāng)x[1,4s]時,|(x)|12a恒成立,試確定a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年江蘇省無錫市高三(上)期中數(shù)學(xué)試卷(解析版) 題型:填空題

定義在R上的函數(shù)y=f(x)是增函數(shù),且函數(shù)y=f(x-2)的圖象關(guān)于(2,0)成中心對稱,設(shè)s,t滿足不等式f(s2-4s)≥-f(4t-t2),若-2≤s≤2時,則3t+s的范圍是   

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年江蘇省無錫市江陰市南菁高級中學(xué)高三(下)開學(xué)質(zhì)量檢測數(shù)學(xué)試卷(解析版) 題型:填空題

定義在R上的函數(shù)y=f(x)是增函數(shù),且函數(shù)y=f(x-2)的圖象關(guān)于(2,0)成中心對稱,若s,t滿足不等式f(s2-4s)≥-f(4t-t2),若-2≤s≤2時,則3t+s的最大值為   

查看答案和解析>>

同步練習(xí)冊答案