如圖,已知空間四邊形中,的中點(diǎn).

(Ⅰ)求證:平面CDE;

(Ⅱ)若G為的重心,試在線段AE上確定一點(diǎn)F,使得GF//平面CDE.

 

【答案】

(Ⅰ)先證,再證,進(jìn)而用線面垂直的判定定理證明即可;

(Ⅱ)取點(diǎn)F使得即可.

【解析】

試題分析:(I),同理,

又∵       ∴平面

(II)連接AG并延長(zhǎng)交CD于H,連接EH,則,在AE上取點(diǎn)F使得,則,易知GF平面CDE.

考點(diǎn):本小題主要考查線面垂直的證明、線線平行的證明等.

點(diǎn)評(píng):用判定定理證明線面垂直或線面平行時(shí),一定要注意定理中要求的條件,定理中要求的條件缺一不可.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知空間四邊形ABCD中,BC=AC,AD=BD,E是AB的中點(diǎn).
求證:
(1)AB⊥平面CDE;
(2)平面CDE⊥平面ABC;
(3)若G為△ADC的重心,試在線段AE上確定一點(diǎn)F,使得GF∥平面CDE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知空間四邊形ABCD中,
AB
=
a
-2
c
,
CD
=5
a
+6
b
-8
c
,對(duì)角線AC,BD的中點(diǎn)分別為E,F(xiàn),則
EF
=
 
(用向量
a
,
b
c
表示).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知空間四邊形ABCD的對(duì)角線AC=10,BD=6,M、N分別是AB、CD的中點(diǎn),MN=7,求異面直線AC與BD所成的角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知空間四邊形ABCD中,AB=CD=3,E、F分別是BC、AD上的點(diǎn),并且BE:EC=AF:FD=1:2,EF=
3
,求AB和CD所成角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知空間四邊形ABCD中,O是對(duì)角線BD的中點(diǎn),CA=CB=CD=BD=2,AB=AD=
2

(1)求證:CO⊥AO;
(2)求證:AO⊥平面BCD;
(3)若G為△ADC的重心,試在線段DO上確定一點(diǎn)F,使得GF∥平面AOC.

查看答案和解析>>

同步練習(xí)冊(cè)答案