【題目】已知橢圓長軸的兩頂點為、,左、右焦點分別為、,焦距為,且,過且垂直于軸的直線被橢圓截得的弦長為.
(1)求橢圓的方程;
(2)在雙曲線上取點異于頂點,直線與橢圓交于點,若直線、、、的斜率分別為、、、,試證明:為定值;
(3)在橢圓外的拋物線上取一點,若、的斜率分別為、,求的取值范圍.
【答案】(1);(2)證明見解析;(3).
【解析】
(1)由,可得出,由題意得出點在橢圓上,將此點的坐標代入橢圓的方程,求出的值,即可得出橢圓的標準方程;
(2)設點、,根據(jù)直線的斜率公式,求得,,由與共線,得出,即可求出;
(3)設點,求得(且),(且),可得出(且),然后利用函數(shù)的單調性可得出的取值范圍.
(1),,所以,橢圓的方程為,
由于且垂直于軸的直線被橢圓截得的弦長為,則點在橢圓上,
所以, ,解得,,,
因此,橢圓的標準方程為;
(2)設點、,由(1)可知、、、,
則,得,,
,得,.
又,,可得,
因此,(定值);
(3)設點,由,解得,
由點在橢圓外的拋物線上一點,則,
直線的斜率為(且),
直線的斜率為(且),
則(且),
則(且),
令,則且,設函數(shù)(且),
則函數(shù)在區(qū)間和上均為增函數(shù),
當時,,即;
當時,.
因此,的取值范圍是.
科目:高中數(shù)學 來源: 題型:
【題目】已知是定義在R上的偶函數(shù)且以2為周期,則“為上的增函數(shù)”是“為上的減函數(shù)”的
A. 充分而不必要的條件B. 必要而不充分的條件
C. 充要條件D. 既不充分也不必要的條件
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知a∈R,命題p:x∈[-2,-1],x2-a≥0,命題q:.
(1)若命題p為真命題,求實數(shù)a的取值范圍;
(2)若命題“p∨q”為真命題,命題“p∧q”為假命題,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,定義兩點與之間的“直角距離”為:.現(xiàn)給出下列4個命題:
①已知、,則為定值;
②已知三點不共線,則必有;
③用表示兩點之間的距離,則;
④若是橢圓上的任意兩點,則的最大值為6.
則下列判斷正確的為__________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】當前,以“立德樹人”為目標的課程改革正在有序推進.高中聯(lián)招對初三畢業(yè)學生進行體育測試,是激發(fā)學生、家長和學校積極開展體育活動,保證學生健康成長的有效措施.程度2019年初中畢業(yè)生升學體育考試規(guī)定,考生必須參加立定跳遠、擲實心球、1分鐘跳繩三項測試,三項考試滿分50分,其中立定跳遠15分,擲實心球15分,1分鐘跳繩20分.某學校在初三上期開始時要掌握全年級學生每分鐘跳繩的情況,隨機抽取了100名學生進行測試,得到下邊頻率分布直方圖,且規(guī)定計分規(guī)則如下表:
每分鐘跳繩個數(shù) | ||||
得分 | 17 | 18 | 19 | 20 |
(Ⅰ)現(xiàn)從樣本的100名學生中,任意選取2人,求兩人得分之和不大于35分的概率;;
(Ⅱ)若該校初三年級所有學生的跳繩個數(shù)服從正態(tài)分布,用樣本數(shù)據(jù)的平均值和方差估計總體的期望和方差,已知樣本方差(各組數(shù)據(jù)用中點值代替).根據(jù)往年經(jīng)驗,該校初三年級學生經(jīng)過一年的訓練,正式測試時每人每分鐘跳繩個數(shù)都有明顯進步,假設今年正式測試時每人每分鐘跳繩個數(shù)比初三上學期開始時個數(shù)增加10個,現(xiàn)利用所得正態(tài)分布模型:
預計全年級恰有2000名學生,正式測試每分鐘跳182個以上的人數(shù);(結果四舍五入到整數(shù))
若在全年級所有學生中任意選取3人,記正式測試時每分鐘跳195以上的人數(shù)為ξ,求隨機變量的分布列和期望.
附:若隨機變量服從正態(tài)分布,則,,.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(本小題滿分13分) 已知雙曲線的兩個焦點為的曲線C上.
(Ⅰ)求雙曲線C的方程;
(Ⅱ)記O為坐標原點,過點Q(0,2)的直線l與雙曲線C相交于不同的兩點E、F,若△OEF的面積為求直線l的方程
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖, △ABC 中, ACB 90 , ABC 30 , BC ,在三角形內(nèi)挖去一個半圓(圓心 O 在邊 BC 上,半圓與 AC,AB 分別相切于點 C,M ,與 BC 交于點 N ),將其繞直線 BC旋轉一周得到一個旋轉體,則該旋轉體體積為________;
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的右焦點為,坐標原點為.橢圓的動弦過右焦點且不垂直于坐標軸, 的中點為,過且垂直于線段的直線交射線于點
(I)證明:點在直線上;
(Ⅱ)當四邊形是平行四邊形時,求的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com