3.在△ABC中,$\overrightarrow{AB}$=$\overrightarrow{c}$,$\overrightarrow{AC}$=$\overrightarrow$,若D,E分別在BC,BA上,且$\overrightarrow{BD}$=2$\overrightarrow{DC}$,$\overrightarrow{BE}$=2$\overrightarrow{EA}$,則向量$\frac{2}{3}$$\overrightarrow$+$\frac{1}{3}$$\overrightarrow{c}$表示( 。
A.$\overrightarrow{AD}$B.$\overrightarrow{CE}$C.$\overrightarrow{DE}$D.$\overrightarrow{ED}$

分析 根據(jù)條件作出圖形,并在邊AC上取點F,使得AF=$\frac{2}{3}AC$,然后連接DE,DF,AD,可以說明四邊形AEDF為平行四邊形,從而根據(jù)向量加法的平行四邊形法則即可得出$\frac{2}{3}\overrightarrow+\frac{1}{3}\overrightarrow{c}=\overrightarrow{AF}+\overrightarrow{AE}=\overrightarrow{AD}$.

解答 解:如圖,$\overrightarrow{BD}=2\overrightarrow{DC},\overrightarrow{BE}=2\overrightarrow{EA}$;

∴$CD=\frac{1}{3}BC,AE=\frac{1}{3}AB$;
在AC上取F,使$AF=\frac{2}{3}AC$;
∴$CF=\frac{1}{3}AC$;
∴DF∥AB,DF=$\frac{1}{3}AB=AE$;
即DF∥AE,且DF=AE;
連接DE,DF,AD,則四邊形AEDF為平行四邊形;
∴$\frac{2}{3}\overrightarrow+\frac{1}{3}\overrightarrow{c}=\frac{2}{3}\overrightarrow{AC}+\frac{1}{3}\overrightarrow{AB}$=$\overrightarrow{AF}+\overrightarrow{AE}=\overrightarrow{AD}$.
故選:A.

點評 考查向量數(shù)乘的幾何意義,平行線分線段成比例,平行四邊形的判定,以及向量加法的平行四邊形法則.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.某中學(xué)為了落實“陽光運(yùn)動一小時”活動,計劃在一塊直角三角形ABC的空地上修建一個占地面積為S的矩形AMPN健身場地.如圖,點M在AC上,點N在AB上,且P點在斜邊BC上,已知∠ACB=60°且|AC|=30米,|AM|=x米,x∈[10,20].
(1)試用x表示S,并求S的取值范圍;
(2)若在矩形AMPN以外(陰影部分)鋪上草坪.已知:矩形AMPN健身場地每平方米的造價為$\frac{37k}{{\sqrt{S}}}$,草坪的每平方米的造價為$\frac{12k}{{\sqrt{S}}}$(k為正常數(shù)).設(shè)總造價T關(guān)于S的函數(shù)為T=f(S),試問:如何選取|AM|的長,才能使總造價T最低.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.下列命題中正確的個數(shù)是( 。
①空間中到定點的距離等于定長的點的集合構(gòu)成球;
②空間中到定點的距離等于定長的點的集合構(gòu)成球面
③一個圓繞直徑所在直線旋轉(zhuǎn)半周所形成的曲面圍成的幾何體是球;
④用平面截球,隨著角度不同,截面可能不是圓面.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.研究函數(shù)y=sin|x|的性質(zhì)(定義域、值域、周期、奇偶性、單調(diào)性、最值).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.?dāng)?shù)列{an}中,a1=1,$\frac{1}{{a}_{n+1}}$=$\sqrt{\frac{1}{{{a}_{n}}^{2}}+4}$,則通項公式an=$\sqrt{\frac{1}{4n-3}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.在空間四邊形中,AB=CD,AB和CD所成角是30°,E、F分別為BC、AD的中點,求EF與AB所成角的大小

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知曲線y=x3上過點(2,8)的切線方程為12x-ay+b=0,求實數(shù)a,b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知數(shù)列{an}中,a1=3,a2=5,an+2=3an+1+4an,(n∈N*
(I)求證數(shù)列{an+1+an}和{an+1-4an}都是等比數(shù)列;
(Ⅱ)求數(shù)列{an}的通項公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知Sn為數(shù)列{an}的前n項和,且滿足a1=1,a2=3,an+2=3an+1,則S2014=( 。
A.2×31007-2B.2×31007C.$\frac{{3}^{2014}-1}{2}$D.$\frac{{3}^{2014}+1}{2}$

查看答案和解析>>

同步練習(xí)冊答案