分析 (1)求出函數(shù)的解析式,并利用輔助角(和差角)公式化為正弦型函數(shù),結(jié)合正弦函數(shù)的單調(diào)性,可得f(x)的單調(diào)遞增區(qū)間.
(2)由已知中f(A)=2,b=1,△ABC外接圓半徑R=1,判斷出△ABC為直角三角形,進(jìn)而可得△ABC的面積.
解答 解:(1)∵向量$\overrightarrow{m}$=(2cosx,1),$\overrightarrow{n}$=(cosx,$\sqrt{3}$sin2x).
∴f(x)=$\overrightarrow{m}$•$\overrightarrow{n}$=2cos2x+$\sqrt{3}$sin2x=cos2x+$\sqrt{3}$sin2x+1=2sin(2x+$\frac{π}{6}$)+1,.
---------(2分)
所以,函數(shù)f(x)的最小正周期為T(mén)=π,-------(3分)
由2kπ-$\frac{π}{2}$≤2x+$\frac{π}{6}$≤2kπ+$\frac{π}{2}$(k∈Z)時(shí),函數(shù)f(x)單調(diào)遞增,
解得kπ-$\frac{π}{3}$≤x≤kπ+$\frac{π}{6}$(k∈Z),
所以函數(shù)f(x)的單調(diào)遞增區(qū)間為[kπ-$\frac{π}{3}$,kπ+$\frac{π}{6}$](k∈Z).----------(6分)
(2)∵f(A)=2sin(2A+$\frac{π}{6}$)+1=2,解得A=$\frac{π}{3}$,------(8分)
又∵△ABC外接圓半徑R=1,
∴a=2RsinA=$\sqrt{3}$.
再由正弦定理$\frac{a}{sinA}=\frac{sinB}$,解得sinB=$\frac{1}{2}$,
∴B=$\frac{π}{6}$
∴C=$\frac{π}{2}$,
即△ABC為直角三角形.--------(11分)
∴S=$\frac{1}{2}ab$=$\frac{\sqrt{3}}{2}$.------------(12分)
點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是三角函數(shù)的恒等變量,三角函數(shù)的圖象和性質(zhì),平面向量的數(shù)量積運(yùn)算,難度中檔.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com