若函數(shù)f(x)(f(x)≠0)為奇函數(shù),則必有


  1. A.
    f(x)•f(-x)>0
  2. B.
    f(x)•f(-x)<0
  3. C.
    f(x)<f(-x)
  4. D.
    f(x)>f(-x)
B
分析:先根據(jù)奇函數(shù)的定義可得到f(-x)=-f(x),又因為f(x)•f(-x)=f(x)[-f(x)]=-[f(x)]2<0,從而可判斷答案.
解答:∵函數(shù)f(x)(f(x)≠0)為奇函數(shù)
∴f(-x)=-f(x)
∴f(x)•f(-x)=f(x)[-f(x)]=-[f(x)]2<0
故選B.
點評:本題主要考查函數(shù)的基本性質(zhì)--奇偶性.考查對基礎知識的靈活運用.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=a2x2(a>0),g(x)=blnx.
(1)若函數(shù)y=f(x)圖象上的點到直線x-y-3=0距離的最小值為
2
,求a的值;
(2)關于x的不等式(x-1)2>f(x)的解集中的整數(shù)恰有3個,求實數(shù)a的取值范圍;
(3)對于函數(shù)f(x)與g(x)定義域上的任意實數(shù)x,若存在常數(shù)k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱直線y=kx+m為函數(shù)f(x)與g(x)的“分界線”.設a=
2
2
,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若函數(shù)f(x)=x2+bx+c的對稱軸方程為x=2,則( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•中山一模)已知函數(shù)f(x)=
13
x3-ax+b
,其中實數(shù)a,b是常數(shù).
(Ⅰ)已知a∈{0,1,2},b∈{0,1,2},求事件A:“f(1)≥0”發(fā)生的概率;
(Ⅱ)若f(x)是R上的奇函數(shù),g(a)是f(x)在區(qū)間[-1,1]上的最小值,求當|a|≥1時g(a)的解析式;
(Ⅲ)記y=f(x)的導函數(shù)為f′(x),則當a=1時,對任意x1∈[0,2],總存在x2∈[0,2]使得f(x1)=f′(x2),求實數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2011•上海模擬)已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當a=1,b=2時,求f(x)的最小值;
(2)若f(a)≥2m-1對任意0<a<b恒成立,求實數(shù)m的取值范圍;
(3)設k、c>0,當a=k2,b=(k+c)2時,記f(x)=f1(x);當a=(k+c)2,b=(k+2c)2時,記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學 來源:徐州模擬 題型:解答題

設函數(shù)f(x)=a2x2(a>0),g(x)=blnx.
(1)若函數(shù)y=f(x)圖象上的點到直線x-y-3=0距離的最小值為2
2
,求a的值;
(2)關于x的不等式(x-1)2>f(x)的解集中的整數(shù)恰有3個,求實數(shù)a的取值范圍;
(3)對于函數(shù)f(x)與g(x)定義域上的任意實數(shù)x,若存在常數(shù)k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱直線y=kx+m為函數(shù)f(x)與g(x)的“分界線”.設a=
2
2
,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案