13.函數(shù)f(x)=(6x-$\frac{3}{2}$)2tan(4x-1)+x+$\frac{3}{4}$,f($\frac{1}{2n}$)+f($\frac{1}{n}$)+f($\frac{3}{2n}$)+…+f($\frac{n-1}{2n}$)=( 。
A.nB.n-1C.$\frac{n}{2}$D.$\frac{n-1}{2}$

分析 由于f(x)+$f(\frac{1}{2}-x)$=2,利用“倒序相加”即可得出.

解答 解:∵f(x)+$f(\frac{1}{2}-x)$=(6x-$\frac{3}{2}$)2tan(4x-1)+x+$\frac{3}{4}$+$(\frac{3}{2}-6x)^{2}$tan(1-4x)+$\frac{1}{2}$-x+$\frac{3}{4}$=2,
∴$f(\frac{i}{2n})+$$f(\frac{n-i}{2n})$=2,
∴Sn=f($\frac{1}{2n}$)+f($\frac{1}{n}$)+f($\frac{3}{2n}$)+…+f($\frac{n-1}{2n}$)=$\frac{1}{2}$×2n=n,
故選:A.

點評 本題考查了函數(shù)的奇偶性、對稱性、“倒序相加”方法,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知拋物線y1=ax2+bx+c(a>0)與x軸相交于點A,B(點A,B在原點O的兩側(cè)),與y軸相交于點C,且點A,C在一次函數(shù)y2=x+n的圖象上,線段AB長為16,線段OC長為6,當(dāng)y1隨著x的增大而減小時,求自變量x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.根據(jù)下列表格中的數(shù)據(jù),可以斷定方程ex-x-2=0的一個根所在的區(qū)間是(1,2).
x-10123
ex0.3712.727.3920.09
x+212345

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知Z=1+i,
(1)設(shè)ω=Z2+3$\overline Z$-4,求|ω|;
(2)若$\frac{{{Z^2}+aZ+b}}{{{Z^2}-Z+1}}$=1+i,求實數(shù)a,b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知兩圓x2+y2=10和(x-1)2+(y-3)2=20相交于A,B兩點,則公共弦AB的長度等于( 。
A.2$\sqrt{10}$B.$\sqrt{10}$C.2$\sqrt{5}$D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知復(fù)數(shù)z1=cosθ-i,z2=sinθ+i,則|z1•z2|的最大值為( 。
A.$\frac{3}{2}$B.$\sqrt{2}$C.$\frac{\sqrt{6}}{2}$D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.設(shè)$\overrightarrow{a}$、$\overrightarrow$是兩個非零向量,則下列選項正確的是( 。
A.若|$\overrightarrow{a}$-$\overrightarrow$|=|$\overrightarrow{a}$|-|$\overrightarrow$|,則$\overrightarrow{a}$⊥$\overrightarrow$B.若$\overrightarrow{a}$⊥$\overrightarrow$,則|$\overrightarrow{a}$-$\overrightarrow$|=|$\overrightarrow{a}$|+|$\overrightarrow$|
C.若|$\overrightarrow{a}$-$\overrightarrow$|=|$\overrightarrow{a}$|-|$\overrightarrow$|,則$\overrightarrow{a}$,$\overrightarrow$共線D.若$\overrightarrow{a}$,$\overrightarrow$平行,則|$\overrightarrow{a}$+$\overrightarrow$|=|$\overrightarrow{a}$|+|$\overrightarrow$|,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.如圖,已知底面為菱形的四棱錐P-ABCD中,△ABC是邊長為2的正三角形,AP=BP=$\frac{\sqrt{2}}{2}$,PC=$\sqrt{2}$且N為線段AC的中點,M為側(cè)棱PB的中點,O為線段AB的中點,
(1)求證:NM∥平面PAD;
(2)求證:直線PO⊥平面ABCD;
(3)在線段BC上是否存在一點K,使得AK⊥PD?若存在求出點K的具體位置并證明,若不存在請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.在平面直角坐標(biāo)系xOy中,已知圓C:$\left\{\begin{array}{l}{x=5cosθ-1}\\{y=5sinθ+2}\end{array}\right.$(θ為參數(shù))和直線l:3x+4y-10=0,則直線l與圓C相交所得的弦長等于4$\sqrt{6}$.

查看答案和解析>>

同步練習(xí)冊答案