18.已知復(fù)數(shù)z1=cosθ-i,z2=sinθ+i,則|z1•z2|的最大值為( 。
A.$\frac{3}{2}$B.$\sqrt{2}$C.$\frac{\sqrt{6}}{2}$D.3

分析 利用復(fù)數(shù)的模的運(yùn)算法則,以及二倍角化簡三角函數(shù),求解最值即可.

解答 解:復(fù)數(shù)z1=cosθ-i,z2=sinθ+i,則|z1•z2|=|z1||z2|=$\sqrt{co{s}^{2}θ+1}•\sqrt{si{n}^{2}θ+1}$
=$\sqrt{si{n}^{2}θco{s}^{2}θ+2}$
=$\sqrt{2+\frac{1}{4}si{n}^{2}2θ}$≤$\sqrt{2+\frac{1}{4}}$=$\frac{3}{2}$,當(dāng)且僅當(dāng)sin22θ=1取得最大值.
故選:A.

點(diǎn)評 本題考查復(fù)數(shù)求模,函數(shù)的最值的求法,考查計(jì)算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.以等腰直角三角形ABC斜邊BC上的高AD為折痕,將△ABC折成二面角C-AD-B為多大時,在折成的圖形中,△ABC為等邊三角形(  )
A.30°B.60°C.90°D.45°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.∫${\;}_{0}^{1}$(e2+2x)dx=e2+1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.若正數(shù)a,b滿足a+b=10,則$\sqrt{a+2}$+$\sqrt{b+3}$的最大值為$\sqrt{30}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.函數(shù)f(x)=(6x-$\frac{3}{2}$)2tan(4x-1)+x+$\frac{3}{4}$,f($\frac{1}{2n}$)+f($\frac{1}{n}$)+f($\frac{3}{2n}$)+…+f($\frac{n-1}{2n}$)=( 。
A.nB.n-1C.$\frac{n}{2}$D.$\frac{n-1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.下列函數(shù)中,在區(qū)間(0,+∞)上是減函數(shù)的是( 。
A.y=-x2+2xB.y=x3C.y=2-x+1D.y=x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知函數(shù)f(x)=x5+ax-8,且f(-2)=10,則f(2)=-26.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.用列舉法表示下列集合.
(1)A={y|y=-2x2+7,x∈N,y∈N};
(2)B={(x,y)|y=-2x2+7,x∈N,y∈N}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.兩個變量y與x的4個不同回歸模型中,它們的相關(guān)系數(shù)r如下,其中擬合效果最好的模型是(  )
A.模型2的相關(guān)系數(shù)r為0.88B.模型1的相關(guān)系數(shù)r為-0.99
C.模型3的相關(guān)系數(shù)r為0.50D.模型4的相關(guān)系數(shù)r為-0.20

查看答案和解析>>

同步練習(xí)冊答案