6.設(shè)p:x<3,q:-1<x<3,則¬q是¬p成立的(  )
A.充分必要條件B.充分不必要條件
C.必要不充分條件D.既不充分也不必要條件

分析 求出命題的等價(jià)條件,利用充分條件和必要條件的定義即可得到結(jié)論.

解答 解:p:x<3,q:-1<x<3,則p是q的充分不必要條件,
則¬p是¬q的必要不充分條件,
故選:C

點(diǎn)評 本題主要考查充分條件和必要條件的判斷,根據(jù)逆否命題的等價(jià)性判斷p是q的充分不必要條件是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知f(x)是定義在區(qū)間[-1,1]上的奇函數(shù),且f(1)=1,且f(x)滿足對任m,n∈[-1,1],有$\frac{f(m)+f(n)}{m+n}$>0.
(1)解不等式f(x+$\frac{1}{2}$)+f(x-1)<0;
(2)若f(x)≤t2-2at+1對所有x∈[-1,1]、a∈[-1,1]恒成立,求實(shí)數(shù)t的取值范圍.
(3)若f(x)≤t2-2at+2對所有x∈[-1,1],t∈[-1,1]恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)f(x)=$\frac{{2}^{x}+1}{{2}^{x}-1}$.
(Ⅰ) 求函數(shù)f(x)的定義域;
(Ⅱ) 判斷函數(shù)f(x)的奇偶性,并證明;
(Ⅲ) 若f(x)=-$\frac{5}{3}$,求x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知集合M={x|4≤x≤7},N={3,5,8},則M∩N={5}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知三棱錐P-ABC,若PA,PB,PC兩兩垂直,且PA=2,PB=PC=1,則三棱錐P-ABC的外接球的表面積為6π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.四個(gè)不同的小球,全部放入編號(hào)為1,2,3,4,5的五個(gè)盒子中.(結(jié)果寫成數(shù)字)
(1)1號(hào)盒子中有球的放法有多少種?
(2)恰有兩個(gè)空盒的放法有多少種?
(3)恰有三個(gè)空盒的放法有多少種?
(4)甲球所放盒的編號(hào)不小于乙球所放盒的編號(hào)的放法有多少種?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.設(shè)x,y滿足約束條件$\left\{\begin{array}{l}{x≥y}\\{y≥4x-3}\\{x≥0,y≥0}\end{array}\right.$,若目標(biāo)函數(shù)$z=x+\frac{n}{2}y({n>0})$,z最大值為2,則$y=tan({nx+\frac{π}{6}})$的圖象向右平移$\frac{π}{6}$后的表達(dá)式為( 。
A.$y=tan({2x+\frac{π}{6}})$B.$y=cot({x-\frac{π}{6}})$C.$y=tan({2x-\frac{π}{6}})$D.y=tan2x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知數(shù)列{an}中,${a_1}=1,{a_{n+1}}=2{a_n}+n-1({n∈{N^*}})$,則其前n項(xiàng)和Sn=${2^{n+1}}-2-\frac{{n({n+1})}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.若定義在R上的函數(shù)f(x)當(dāng)且僅當(dāng)存在有限個(gè)非零自變量x,使得f(-x)=f(x),則稱f(x)為類偶函數(shù),則下列函數(shù)中為類偶函數(shù)的是( 。
A.f(x)=cosxB.f(x)=sinxC.f(x)=x2-2xD.f(x)=x3-2x

查看答案和解析>>

同步練習(xí)冊答案