A. | (0,$\frac{1}{e}$) | B. | ($\frac{1}{e}$,1) | C. | (1,2) | D. | (2,e) |
分析 根據(jù)實(shí)根存在性定理,檢驗(yàn)是否符合兩個(gè)函數(shù)值的乘積小于零,當(dāng)乘積小于零時(shí),存在零點(diǎn).
解答 解:∵f($\frac{1}{e}$)=$\frac{1}{2}$×$\frac{1}{{e}^{2}}$-3×$\frac{1}{e}$+31n$\frac{1}{e}$+3<0,
f(1)=$\frac{1}{2}$-3+3>0,
∴f($\frac{1}{e}$)f(1)<0,
∴根據(jù)零點(diǎn)存在性定理判斷:($\frac{1}{e}$,1)上有1個(gè)零點(diǎn).
故選:B
點(diǎn)評 本題考查了觀察法求解函數(shù)的單調(diào)性,零點(diǎn)存在性定理的運(yùn)用,屬于基礎(chǔ)題,難度不大.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (kπ,kπ+$\frac{π}{2}$)(k∈Z) | B. | (2kπ,2kπ+$\frac{π}{2}$)(k∈Z) | C. | ($\frac{1}{2}$kπ,$\frac{1}{2}$kπ+$\frac{π}{2}$)(k∈Z) | D. | ($\frac{1}{2}$kπ,$\frac{1}{2}$kπ+$\frac{π}{4}$)(k∈Z) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,-4) | B. | (-1,0) | C. | (-4,0) | D. | (-1,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {-1,-2,0,1} | B. | {-1,0,1,2} | C. | {0,1,2,3} | D. | {-1,1,2,3} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com