已知向量 =(1,2) ,=(cosa,sina),設(shè)=+t(為實(shí)數(shù)).
(1)若a=,求當(dāng)||取最小值時(shí)實(shí)數(shù)的值;
(2)若⊥,問(wèn):是否存在實(shí)數(shù),使得向量–和向量的夾角為,若存在,請(qǐng)求出t的值;若不存在,請(qǐng)說(shuō)明理由.
(3)若⊥,求實(shí)數(shù)的取值范圍A,并判斷當(dāng)時(shí)函數(shù)的單調(diào)性.
解:(1)因?yàn)閍=,=(),,…………………2分
則====
所以當(dāng)時(shí),取到最小值,最小值為………………………4分
(2)由條件得cos45=,………………………5分
又因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012052012264945313664/SYS201205201229011250173858_DA.files/image014.png">==, ==,
,………………………………6分
則有=,且,
整理得,所以存在=滿足條件……………8分
(3) =(1+tcosa,2+tsina)
⊥5+t(cosa+2sina)=05+tsin(a+)=0
……………10分
又,
令,則
當(dāng)時(shí),,
在上單調(diào)遞增
當(dāng)時(shí),,
在上單調(diào)遞增…………………………12
【解析】略
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知向量a=(1,2),b=(0,1),設(shè)u=a+kb,v=2a-b,若u∥v,則實(shí)數(shù)k的值為_(kāi)_______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年人教版高考數(shù)學(xué)文科二輪專題復(fù)習(xí)提分訓(xùn)練8練習(xí)卷(解析版) 題型:填空題
已知向量a=(x-1,2),b=(4,y),若a⊥b,則9x+3y的最小值為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:新課標(biāo)高三數(shù)學(xué)空間向量及其運(yùn)算、角的概念及其求法和空間距離專項(xiàng)訓(xùn)練(河北) 題型:選擇題
已知向量a=(1, 2, 3), b =(-2,-4,-6),|c|=, 若(a+b)·c=7,則a與c的夾角為( )
A.30° B.60° C.120° D.150°
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com