已知雙曲線的焦距為2
3
,離心率
3
,則雙曲線的標(biāo)準(zhǔn)方程是(  )
A、x2-
y2
2
=1
B、
x2
4
-
x2
8
=1
C、x2-
y2
2
=1或y2-
x2
2
=1
D、
x2
4
-
y2
8
=1或
y2
4
-
x2
8
=1
考點(diǎn):雙曲線的標(biāo)準(zhǔn)方程
專題:計(jì)算題,圓錐曲線的定義、性質(zhì)與方程
分析:根據(jù)雙曲線的焦距為2
3
,離心率
3
,求出a,c,再根據(jù)a,b,c的關(guān)系式求出b的值,討論焦點(diǎn)所在坐標(biāo)軸,就可得到雙曲線方程.
解答: 解:由題知2c=2
3
,e=
3
⇒a=1,b=
2

這樣的雙曲線標(biāo)準(zhǔn)方程有兩個(gè),標(biāo)準(zhǔn)方程是x2-
y2
2
=1或y2-
x2
2
=1.
故選:C.
點(diǎn)評(píng):本題主要考查了雙曲線的標(biāo)準(zhǔn)方程,解題的關(guān)鍵討論焦點(diǎn)所在坐標(biāo)軸,同時(shí)考查了分類討論的數(shù)學(xué)思想,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知變量x,y滿足
x-2y+4≥0
x≤2
x+y-2≥0
,則
2x+y+5
x+2
的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=3sin(2x-
π
4
)+5的相鄰兩條對(duì)稱軸間的距離為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知正方形ABCD,其中頂點(diǎn)A、C坐標(biāo)分別是(2,0)、(2,4),點(diǎn)P(x,y)在正方形內(nèi)部(包括邊界)上運(yùn)動(dòng),則z=2x+y的最大值是( 。
A、10B、8C、12D、6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如表提供了某廠節(jié)能降耗技術(shù)改造后在生產(chǎn)A產(chǎn)品過(guò)程中記錄的產(chǎn)量x(噸)與相應(yīng)的生產(chǎn)能耗y(噸)的幾組對(duì)應(yīng)數(shù)據(jù),根據(jù)表提供的數(shù)據(jù),求出y關(guān)于x的線性回歸方程為
y
=0.7x+0.35,則下列結(jié)論錯(cuò)誤的是( 。
x 3 4 5 6
y 2.5 t 4 4.5
A、產(chǎn)品的生產(chǎn)能耗與產(chǎn)量呈正相關(guān)
B、t的取值必定是3.15
C、回歸直線一定過(guò)點(diǎn)(4,5,3,5)
D、A產(chǎn)品每多生產(chǎn)1噸,則相應(yīng)的生產(chǎn)能耗約增加0.7噸

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

集合M={0,1,2,3,4,5},N={0,2,3},則∁MN=( 。
A、{0,2,3}
B、{0,1,4}
C、{1,2,3}
D、{1,4,5}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)全集U=R,集合A={x|
x+1
x-2
≥0},B={x|1<2x<8},則A∩B等于(  )
A、[-1,3)
B、(0,2]
C、(1,2]
D、(2,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(x+a)5展開(kāi)式中x3的系數(shù)為10,則實(shí)數(shù)a的值為( 。
A、1B、-1
C、1或-1D、2或1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=x2-2x,若f(x+1)+f(y+1)≤f(x)+f(y)≤0,則點(diǎn)P(x,y)所形成的區(qū)域的面積為( 。
A、
3
+
3
2
B、
3
-
3
2
C、
3
+
3
2
D、
3
-
3
2

查看答案和解析>>

同步練習(xí)冊(cè)答案