【題目】已知函數(shù).

(1)若函數(shù)與函數(shù)處有相同的切線,求實(shí)數(shù)的值;

(2)當(dāng)時(shí), ,求實(shí)數(shù)的取值范圍.

【答案】(1).

(2).

【解析】

(1)根據(jù)題意,求出f(x)與g(x)的導(dǎo)數(shù),由導(dǎo)數(shù)的幾何意義可得f'(1)=g'(1),則2λ=1,解可得λ的值,即可得答案;

(2)根據(jù)題意,設(shè)h(x)=f(x)﹣g(x)=xlnx﹣λ(x2﹣1),則原問題可以轉(zhuǎn)化為h(x)0x[1,+∞)恒成立,求出h(x)的導(dǎo)數(shù),利用導(dǎo)數(shù)與函數(shù)單調(diào)性的關(guān)系,分析可得答案.

(1)由題意得,

,且函數(shù)處有相同的切線,

,則,即.

(2)設(shè),則恒成立.

,且,即.

另一方面,當(dāng)時(shí),記,則.

當(dāng)時(shí),內(nèi)為減函數(shù),

當(dāng)時(shí),,即內(nèi)為減函數(shù),

當(dāng)時(shí),恒成立,符合題意.

當(dāng)時(shí),

①若,則恒成立,

內(nèi)為增函數(shù),當(dāng)時(shí),恒成立,不符合題意.

②若,令,則

內(nèi)為增函數(shù),當(dāng)時(shí),,即

內(nèi)為增函數(shù),當(dāng)時(shí),,不符合題意,

綜上所述.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若關(guān)于x的不等式的解集是,

(1)求a的值;

(2)求不等式的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若函數(shù)上的單調(diào)減函數(shù),已知,,且在定義域內(nèi)恒成立,則實(shí)數(shù)的取值范圍為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,將一矩形花壇ABCD擴(kuò)建成一個(gè)更大的矩形花壇AMPN,要求B點(diǎn)在AM上,D點(diǎn)在AN上,且對角線MN過點(diǎn)C,已知AB=2米,AD=1米.

(1)要使矩形AMPN的面積大于9平方米,則DN的長應(yīng)在什么范圍內(nèi)?

(2)當(dāng)DN的長度為多少時(shí),矩形花壇AMPN的面積最小?并求出最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)fx)的最小值為1,且f0)=f2)=3

1)求fx)的解析式;

2)若fx)在區(qū)間[2a,a+1]上不單調(diào),求實(shí)數(shù)a的取值范圍;

3)在區(qū)間[11]上,yfx)的圖象恒在y2x+2m+1的圖象上方,試確定實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù),則滿足f(f(a))=2f(a)a的取值范圍是(  )

A. B. [0,1]

C. D. [1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知命題px∈R,exmx=0,qx∈R,x2-2mx+1≥0,若p∨(q)為假命題,則實(shí)數(shù)m的取值范圍是________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了了解某省各景區(qū)在大眾中的熟知度,隨機(jī)從本省歲的人群中抽取了人,得到各年齡段人數(shù)的頻率分布直方圖如圖所示,現(xiàn)讓他們回答問題“該省有哪幾個(gè)國家級(jí)旅游景區(qū)?”,統(tǒng)計(jì)結(jié)果如下表所示:

組號(hào)

分組

回答正確的人數(shù)

回答正確的人數(shù)占本組的頻率

1)分別求出的值;

2)從第組回答正確的人中用分層抽樣的方法抽取人,求第組每組抽取的人數(shù);

3)在(2)中抽取的人中隨機(jī)抽取人,求所抽取的人中恰好沒有年齡段在的概率

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知單位圓O上的兩點(diǎn)A,B及單位圓所在平面上的一點(diǎn)P,滿足 =m + (m為常數(shù)).

(1)如圖,若四邊形OABP為平行四邊形,求m的值;
(2)若m=2,求| |的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案