P、Q分別為上任意一點(diǎn),則的最小值為

(A)     (B)    (C) 3    (D) 6

 

【答案】

B

【解析】略

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知圓C1:(x-2cosθ)2+(y-2sinθ)2=1與圓C2:x2+y2=1,在下列說(shuō)法中:
①對(duì)于任意的θ,圓C1與圓C2始終相切;
②對(duì)于任意的θ,圓C1與圓C2始終有四條公切線;
③當(dāng)θ=
π
6
時(shí),圓C1被直線l:
3
x-y-1=0
截得的弦長(zhǎng)為
3
;
④P,Q分別為圓C1與圓C2上的動(dòng)點(diǎn),則|PQ|的最大值為4.
其中正確命題的序號(hào)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系xOy中,以坐標(biāo)原點(diǎn)O為極點(diǎn)x軸的正半軸為極軸建立極坐標(biāo)系,曲線C1的極坐標(biāo)方程為:3ρ2=12ρcosθ-10(ρ>0).
(1)求曲線C1的普通方程
(2)曲線C2的方程為
x2
16
+
y2
4
=1
,設(shè)P、Q分別為曲線C1與曲線C2上的任意一點(diǎn),求|PQ|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010年浙江省杭州市七校高二上學(xué)期期中考試數(shù)學(xué)理卷 題型:選擇題

P、Q分別為上任意一點(diǎn),則的最小值為

(A)          (B)6         (C) 3          (D)

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

P、Q分別為上任意一點(diǎn),則的最小值為

(A)          (B)6         (C) 3          (D)

查看答案和解析>>

同步練習(xí)冊(cè)答案